Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D-printed polylactic acid lattice structures

被引:26
|
作者
Tao, Yubo [1 ]
Li, Peng [1 ]
Zhang, Hengwang [2 ]
Shi, Sheldon Q. [3 ]
Zhang, Jingfa [1 ]
Yin, Qing [1 ]
机构
[1] Qilu Univ Technol, State Key Lab Biobased Mat & Green Papermaking, Shandong Acad Sci, Jinan 250353, Peoples R China
[2] Shandong Univ Arts, Design Coll, Jinan 250300, Peoples R China
[3] Univ North Texas, Dept Mech & Energy Engn, Denton, TX 76203 USA
关键词
Rigid polyurethane; Lattice; Foam composites; 3D printing; Mechanical properties; VELOCITY IMPACT RESPONSE; ENERGY-ABSORPTION; FIBER CONTENT; CORE; OPTIMIZATION; DEFORMATION; STRENGTH; DESIGN;
D O I
10.1016/j.compstruct.2021.114866
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lightweight rigid polyurethane foam (RPUF) composites with favorable mechanical properties are demanded by numerous engineering applications. The mechanical performance of foam composites could be customized and enhanced by embedding geometric skeletons. The advancement of 3D printing technology has enabled greater freedom in manufacturing geometrically complex products. In this paper, two types of lattice structures were 3D printed with fused filament fabrication (FFF). Structural composites were prepared by filling the lattices with RPUF through the free rising method. Experimental testing and FEA modeling demonstrated that the lattice structures had significant effects on the composites' stress dissipation and fracture forms. Compared to neat RPUF, the composites exhibited greater elastic limit, compression modulus, energy absorption capabilities, flexural strength, and flexural modulus. Lattices with more struts and greater density resulted in superior compression and flexural performance. This study shows that FFF lattices are suitable for constructing RPUF composites with enhanced flexural and compression properties.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Comparison of Mechanical Properties of 3D-Printed and Compression-Molded Wood-Polylactic Acid (PLA) Composites
    Narlioglu, Nasir
    BIORESOURCES, 2022, 17 (02) : 3291 - 3302
  • [2] Effect of Relative Density in In-Plane Mechanical Properties of Common 3D-Printed Polylactic Acid Lattice Structures
    Leon-Becerra, Juan
    Gonzalez-Estrada, Octavio A.
    Quiroga, Jabid
    ACS OMEGA, 2021, 6 (44): : 29830 - 29838
  • [3] Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites
    Chen, Ke
    Yu, Liguo
    Cui, Yonghui
    Jia, Mingyin
    Pan, Kai
    THIN-WALLED STRUCTURES, 2021, 164
  • [4] Correction to: The influence of stiffener geometry on flexural properties of 3D-printed polylactic acid (PLA) beams
    Silas Z. Gebrehiwot
    Leonardo Espinosa-Leal
    J. N. Eickhof
    L. Rechenberg
    Progress in Additive Manufacturing, 2020, 5 : 421 - 421
  • [5] Hybrid toughening effect of flax fiber and thermoplastic polyurethane elastomer in 3D-printed polylactic acid composites
    Ansaripour, Aref
    Heidari-Rarani, Mohammad
    POLYMER COMPOSITES, 2024, : 17239 - 17256
  • [6] The Mechanical Properties and Degradation Behavior of 3D-Printed Cellulose Nanofiber/Polylactic Acid Composites
    Zhang, Zhongsen
    Cao, Bingyan
    Jiang, Ning
    MATERIALS, 2023, 16 (18)
  • [7] FLEXURAL PROPERTIES OF GLASS-FIBER REINFORCED RIGID POLYURETHANE FOAM
    MORIMOTO, K
    SUZUKI, T
    YOSOMLYA, R
    INDUSTRIAL & ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, 1984, 23 (01): : 81 - 85
  • [8] Mechanical Properties and Fracture Resistance of 3D-Printed Polylactic Acid
    Yadav, Deepesh
    Jaya, Balila Nagamani
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [9] Physicochemical Properties of 3D-Printed Polylactic Acid/Hydroxyapatite Scaffolds
    Perez-Davila, Sara
    Garrido-Gulias, Natalia
    Gonzalez-Rodriguez, Laura
    Lopez-Alvarez, Miriam
    Serra, Julia
    Lopez-Periago, Jose Eugenio
    Gonzalez, Pio
    POLYMERS, 2023, 15 (13)
  • [10] Piezoresistive Properties of 3D-Printed Polylactic Acid (PLA) Nanocomposites
    Sanatgar, Razieh Hashemi
    Cayla, Aurelie
    Guan, Jinping
    Chen, Guoqiang
    Nierstrasz, Vincent
    Campagne, Christine
    POLYMERS, 2022, 14 (15)