Temperature-dependent criticality in random 2D Ising models

被引:4
|
作者
Metra, Matteo [1 ]
Zorrilla, Luc [1 ]
Zani, Maurizio [1 ]
Puppin, Ezio [1 ]
Biscari, Paolo [1 ]
机构
[1] Politecn Milan, Dept Phys, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 09期
关键词
FERROMAGNETIC DOMAIN-WALL; BARKHAUSEN NOISE; HYSTERESIS; AVALANCHES; DYNAMICS;
D O I
10.1140/epjp/s13360-021-01939-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider 2D random Ising ferromagnetic models, where quenched disorder is represented either by random local magnetic fields (random-field Ising model) or by a random distribution of interaction couplings (random-bond Ising model). In both cases, we first perform zero- and finite-temperature Monte Carlo simulations to determine how the critical temperature depends on the disorder parameter. We then focus on the reversal transition triggered by an external field and study the associated Barkhausen noise. Our main result is that the critical exponents characterizing the power law associated with the Barkhausen noise exhibit a temperature dependence in line with existing experimental observations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Temperature-dependent criticality in random 2D Ising models
    Matteo Metra
    Luc Zorrilla
    Maurizio Zani
    Ezio Puppin
    Paolo Biscari
    [J]. The European Physical Journal Plus, 136
  • [2] ON THE 2D ISING WULFF CRYSTAL NEAR CRITICALITY
    Cerf, R.
    Messikh, R. J.
    [J]. ANNALS OF PROBABILITY, 2010, 38 (01): : 102 - 149
  • [3] Efficient algorithm for random-bond ising models in 2D
    Loh, Y. L.
    Carlson, E. W.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (22)
  • [4] Temperature-dependent electronic excitations in a 2D graphite layer
    Ho, J. H.
    Chiu, C. W.
    Lu, C. L.
    Lin, M. F.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2): : 573 - 576
  • [5] Finite-Temperature Avalanches in 2D Disordered Ising Models
    Ettori, Federico
    Perani, Filippo
    Turzi, Stefano
    Biscari, Paolo
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (04)
  • [6] Towards elucidation of zero-temperature criticality of the Ising model on 2D dynamical triangulations
    Ambjorn, Jan
    Sato, Yuki
    Tanaka, Tomo
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [7] Finite-Temperature Avalanches in 2D Disordered Ising Models
    Federico Ettori
    Filippo Perani
    Stefano Turzi
    Paolo Biscari
    [J]. Journal of Statistical Physics, 190
  • [8] Ising model with temperature-dependent interactions
    Campi, X
    Krivine, H
    [J]. EUROPHYSICS LETTERS, 2004, 66 (04): : 527 - 530
  • [9] Global Regularity for the 2D Boussinesq Equations with Temperature-Dependent Viscosity
    Dong, Bo-Qing
    Ye, Zhuan
    Zhai, Xiaoping
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (01)
  • [10] Global Regularity for the 2D Boussinesq Equations with Temperature-Dependent Viscosity
    Bo-Qing Dong
    Zhuan Ye
    Xiaoping Zhai
    [J]. Journal of Mathematical Fluid Mechanics, 2020, 22