MM Algorithms for Some Discrete Multivariate Distributions

被引:42
|
作者
Zhou, Hua [1 ]
Lange, Kenneth [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
关键词
Dirichlet and multinomial distributions; Inequalities; Maximum likelihood; Minorization; EM ALGORITHM; MAXIMUM-LIKELIHOOD; RANDOM PARTITIONS; ACCELERATION; MODELS;
D O I
10.1198/jcgs.2010.09014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The MM (minorization-maximization) principle is a versatile tool for constructing optimization algorithms. Every EM algorithm is an MM algorithm but not vice versa. This article derives MM algorithms for maximum likelihood estimation with discrete multivariate distributions such as the Dirichlet-multinomial and Connor-Mosimann distributions, the Neerchal-Morel distribution, the negative-multinomial distribution, certain distributions on partitions, and zero-truncated and zero-inflated distributions. These MM algorithms increase the likelihood at each iteration and reliably converge to the maximum from well-chosen initial values. Because they involve no matrix inversion, the algorithms are especially pertinent to high-dimensional problems. To illustrate the performance of the MM algorithms, we compare them to Newton's method on data used to classify handwritten digits.
引用
收藏
页码:645 / 665
页数:21
相关论文
共 50 条