2D/3D US-TO-MRI RIGID REGISTRATION BY DEEP LEARNING

被引:0
|
作者
Han, JiaXin [1 ]
Fu, TianYu [1 ]
Fan, JingFan [1 ]
Deng, QiaoLing [1 ]
Yang, Jian [1 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Res Ctr Mixed Real & Adv Display, Lab Beijing Engn, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
2DUS-3DMRI; Rigid registration; Deep learning; ULTRASOUND;
D O I
10.1145/3468945.3468951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
2D ultrasound (US) images to 3D magnetic resonance (MR) image registration is a crucial module in US-guided surgical navigation. US images need to be aligned with a preoperative image to provide good anatomy information guidance during interventions. However, the difference between the modality of US and MR makes the task challenging. To address this problem, we propose a learning-based rigid registration method between 2D US and 3D MR. The geodesic distance on the special Euclidean group SE(3) equipped with a left-invariant Riemannian metric is used as the loss function of a regression network. The registration result is optimized from the registration network by maximizing the similarity metric defined by a local structure orientation descriptor (LSOD). We achieve the angle and distance errors of 3.83 +/- 0.39 degrees and 0.017 +/- 0.001 mm, outperforming the L2 norm loss function which results in 4.21 +/- 0.19 degrees angle error and 0.039 +/- 0.001 mm distance error. Qualitative and quantitative evaluations confirm that the proposed method can achieve accurate 2DUS-3DMRI rigid registration.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [1] Interactive initialization of 2D/3D rigid registration
    Gong, Ren Hui
    Gueler, Oezguer
    Kuerklueoglu, Mustafa
    Lovejoy, John
    Yaniv, Ziv
    [J]. MEDICAL PHYSICS, 2013, 40 (12)
  • [2] Deep Iterative 2D/3D Registration
    Jaganathan, Srikrishna
    Wang, Jian
    Borsdorf, Anja
    Shetty, Karthik
    Maier, Andreas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV, 2021, 12904 : 383 - 392
  • [3] Robust Non-Rigid Registration of 2D and 3D Graphs
    Serradell, Eduard
    Glowacki, Przemyslaw
    Kybic, Jan
    Moreno-Noguer, Francesc
    Fua, Pascal
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 996 - 1003
  • [4] 2D/3D image registration using regression learning
    Chou, Chen-Rui
    Frederick, Brandon
    Mageras, Gig
    Chang, Sha
    Pizer, Stephen
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (09) : 1095 - 1106
  • [5] Non-rigid registration of 2D manifolds in 3D Euclidian space
    Darkner, Sune
    Vester-Christensen, Martin
    Paulsen, Rasmus R.
    Larsen, Rasmus
    [J]. MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [6] Extended global optimization strategy for rigid 2D/3D image registration
    Kubias, Alexander
    Deinzer, Frank
    Feldmann, Tobias
    Paulus, Dietrich
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 759 - 767
  • [7] Registration of 3D Fetal Brain US and MRI
    Kuklisova-Murgasova, Maria
    Cifor, Amalia
    Napolitano, Raffaele
    Papageorghiou, Aris
    Quaghebeur, Gerardine
    Noble, J. Alison
    Schnabel, Julia A.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 667 - 674
  • [8] Transfer Learning for Nonrigid 2D/3D Cardiovascular Images Registration
    Guan, Shaoya
    Wang, Tianmiao
    Sun, Kai
    Meng, Cai
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3300 - 3309
  • [9] 3D Physics-Based Registration of 2D Dynamic MRI Data
    Trivisonne, Raffaella
    Peterlik, Igor
    Cotin, Stephane
    Courtecuisse, Hadrien
    [J]. MEDICINE MEETS VIRTUAL REALITY 22, 2016, 220 : 432 - 438
  • [10] Intra-cardiac 2D US to 3D CT image registration
    Huang, Xishi
    Hill, Nicholas A.
    Ren, Jing
    Guiraudon, Gerard
    Peters, Terry M.
    [J]. MEDICAL IMAGING 2007: VISUALIZATION AND IMAGE-GUIDED PROCEDURES, PTS 1 AND 2, 2007, 6509