Device-independent quantum key distribution with single-photon sources

被引:37
|
作者
Kolodynski, J. [1 ,2 ]
Mattar, A. [2 ]
Skrzypczyk, P. [3 ]
Woodhead, E. [2 ,4 ]
Cavalcanti, D. [2 ]
Banaszek, K. [1 ,5 ]
Acin, A. [2 ,6 ]
机构
[1] Univ Warsaw, Ctr Quantum Opt Technol, Ctr New Technol, Banacha 2c, PL-02097 Warsaw, Poland
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England
[4] Univ Libre Bruxelles, Lab Informat Quant, Brussels 1050, Belgium
[5] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[6] ICREA Inst Catalana Recerca & Estudis Avancats, Lluis Companys 23, Barcelona 08010, Spain
来源
QUANTUM | 2020年 / 4卷
关键词
HERALDED ENTANGLEMENT; PERFORMANCE; GENERATION; VIOLATION; INEQUALITY; SECURITY; DOT;
D O I
10.22331/q-2020-04-30-260
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Device-independent quantum key distribution protocols allow two honest users to establish a secret key with minimal levels of trust on the provider, as security is proven without any assumption on the inner working of the devices used for the distribution. Unfortunately, the implementation of these protocols is challenging, as it requires the observation of a large Bell-inequality violation between the two distant users. Here, we introduce novel photonic protocols for device-independent quantum key distribution exploiting single-photon sources and heralding-type architectures. The heralding process is designed so that transmission losses become irrelevant for security. We then show how the use of single-photon sources for entanglement distribution in these architectures, instead of standard entangled-pair generation schemes, provides significant improvements on the attainable key rates and distances over previous proposals. Given the current progress in single-photon sources, our work opens up a promising avenue for device-independent quantum key distribution implementations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Device-independent quantum key distribution using single-photon entanglement
    Kamaruddin, S.
    Shaari, J. S.
    [J]. EPL, 2015, 110 (02)
  • [2] Device-independent quantum key distribution with realistic single-photon source implementations
    Gonzalez-Ruiz, Eva M.
    Rivera-Dean, Javier
    Cenni, Marina F. B.
    Sorensen, Anders S.
    Acin, Antonio
    Oudot, Enky
    [J]. OPTICS EXPRESS, 2024, 32 (08) : 13181 - 13196
  • [3] Device-Independent Quantum Secure Direct Communication with Single-Photon
    Zhou, Lan
    Xu, Bao-Wen
    Zhong, Wei
    Sheng, Yu-Bo
    [J]. PHYSICAL REVIEW APPLIED, 2023, 19 (01):
  • [4] Device-Independent Quantum Key Distribution
    Acin, Antonio
    [J]. 2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [5] Device-Independent Quantum Key Distribution
    Curty, Marcos
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [6] The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources
    Xing-Yu Zhou
    Chun-Hui Zhang
    Guang-Can Guo
    Qin Wang
    [J]. Quantum Information Processing, 2016, 15 : 2455 - 2464
  • [7] Obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources
    Zhou, Xing-Yu
    Zhang, Chun-Hui
    Zhang, Chun-Mei
    Wang, Qin
    [J]. PHYSICAL REVIEW A, 2017, 96 (05)
  • [8] The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources
    Zhou, Xing-Yu
    Zhang, Chun-Hui
    Guo, Guang-Can
    Wang, Qin
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (06) : 2455 - 2464
  • [9] Fully Device-Independent Quantum Key Distribution
    Vazirani, Umesh
    Vidick, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (14)
  • [10] Efficient Device-Independent Quantum Key Distribution
    Haenggi, Esther
    Renner, Renato
    Wolf, Stefan
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2010, 2010, 6110 : 216 - +