Aliphatic SPI charge-transfer complex hybrid films for high temperature polymer electrolyte membrane fuel cells

被引:9
|
作者
Christiani, Liana [1 ]
Sasaki, Kazunari [1 ,2 ,3 ,4 ]
Nishihara, Masamichi [2 ,3 ,4 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Fukuoka 8190395, Japan
[2] Kyushu Univ, Next Generat Fuel Cell Res Ctr NEXT FC, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, World Premier Int Res Ctr Initiat, Fukuoka 8190395, Japan
[4] Kyushu Univ, Ctr Innovat, Ctr Coevolut Social Syst COI CESS, Fukuoka 8190395, Japan
关键词
batteries and fuel cells; membranes; polyelectrolytes; polyimides; supramolecular structures; SULFONATED POLYIMIDE MEMBRANE; PROTON CONDUCTIVITY; DURABILITY; OPERATION;
D O I
10.1002/app.46087
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new method to synthesize polymer electrolyte membranes based on charge-transfer (CT) complexes for high temperature fuel cells is investigated. Aliphatic sulfonated polyimide (SPI) CT complex hybrid films are prepared. Aliphatic units are introduced into the SPI main chain to increase the elasticity compared with aromatic SPI films. Electron-donating compounds are included to form a CT complex, resulting in improved control over mechanical strength, water uptake, and thermal stability. The resulting thermal properties of the SPI CT films are sufficient to operate at elevated temperature (up to 120 degrees C), and the proton conductivity is comparable to that of Nafion 115. These films are thus promising alternative membranes for high temperature polymer electrolyte fuel cell applications. (c) 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46087.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Development of Charge-Transfer Complex Hybrid Films as Polymer Electrolyte Membrane for High Temperature PEFC Operation
    Christiani, Liana
    Sasaki, Kazunari
    Nishihara, Masamichi
    [J]. MACROMOLECULAR CHEMISTRY AND PHYSICS, 2016, 217 (05) : 654 - 663
  • [2] Development of a Heat-Treated Polymer-Polymer Type Charge-Transfer Blend Membrane for Application in Polymer Electrolyte Fuel Cells
    Feng, Shiyan
    Kondo, Shoichi
    Kikuchi, Takamasa
    Christiani, Liana
    Hwang, Byungchan
    Sasaki, Kazuriari
    Nishihara, Masamichi
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (12): : 8715 - 8723
  • [3] Membrane depending properties of high temperature polymer electrolyte fuel cells
    Mahr, Ulrich
    Gronwald, Oliver
    Reiche, Annette
    Melzner, Dieter
    [J]. DESALINATION, 2006, 200 (1-3) : 648 - 649
  • [4] A dynamic model for high temperature polymer electrolyte membrane fuel cells
    Boaventura, M.
    Sousa, J. M.
    Mendes, A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) : 9842 - 9854
  • [5] A polytetrafluoroethylene/quaternized polysulfone membrane for high temperature polymer electrolyte membrane fuel cells
    Li, Mingqiang
    Scott, Keith
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1894 - 1898
  • [6] Temperature Effects in Polymer Electrolyte Membrane Fuel Cells
    Lochner, Tim
    Kluge, Regina M.
    Fichtner, Johannes
    El-Sayed, Hany A.
    Garlyyev, Batyr
    Bandarenka, Aliaksandr S.
    [J]. CHEMELECTROCHEM, 2020, 7 (17) : 3545 - 3568
  • [7] High temperature polymer electrolyte fuel cells
    Savinell, RF
    Wainright, JS
    Litt, M
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON PROTON CONDUCTING MEMBRANE FUEL CELL II, 1999, 98 (27): : 81 - 90
  • [8] High temperature polymer electrolyte membrane fuel cell
    K.Scott
    M.Mamlouk
    [J]. 电池, 2006, (05) : 347 - 353
  • [9] High Temperature Polymer Electrolyte Membrane Fuel Cells with High Phosphoric Acid Retention
    Lim, Katie H.
    Matanovic, Ivana
    Maurya, Sandip
    Kim, Youngkwang
    De Castro, Emory S.
    Jang, Ji-Hoon
    Park, Hyounmyung
    Kim, Yu Seung
    [J]. ACS ENERGY LETTERS, 2022, 8 (01) : 529 - 536
  • [10] Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells
    Martin, S.
    Li, Q.
    Steenberg, T.
    Jensen, J. O.
    [J]. JOURNAL OF POWER SOURCES, 2014, 272 : 559 - 566