ARIMA-GARCH MODELING FOR EPILEPTIC SEIZURE PREDICTION

被引:0
|
作者
Mohamadi, Salman [1 ]
Amindavar, Hamidreza [1 ]
Hosseini, S. M. Ali Tayaranian [1 ]
机构
[1] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
关键词
Epileptic seizure; prediction; ARIMA; ARCH and GARCH modeling; heteroskedasticity;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper provides a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autoregressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction but the ARCH or GARCH model acting on the residuals of ARIMA attains a considerable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are examined to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 50 条
  • [1] Hybrid of ARIMA-GARCH Modeling in Rainfall Time Series
    Yusof, Fadhilah
    Kane, Ibrahim Lawal
    Yusop, Zulkifli
    [J]. JURNAL TEKNOLOGI, 2013, 63 (02):
  • [2] The performance of hybrid ARIMA-GARCH modeling in forecasting gold price
    Yaziz, S. R.
    Azizan, N. A.
    Zakaria, R.
    Ahmad, M. H.
    [J]. 20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 1201 - 1207
  • [3] The influence of ARIMA-GARCH parameters in feed forward neural networks prediction
    Mauri Aparecido de Oliveira
    [J]. Neural Computing and Applications, 2011, 20 : 687 - 701
  • [4] Short-time Traffic Flow Prediction with ARIMA-GARCH Model
    Chen, Chenyi
    Hu, Jianming
    Meng, Qiang
    Zhang, Yi
    [J]. 2011 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2011, : 607 - 612
  • [5] The influence of ARIMA-GARCH parameters in feed forward neural networks prediction
    de Oliveira, Mauri Aparecido
    [J]. NEURAL COMPUTING & APPLICATIONS, 2011, 20 (05): : 687 - 701
  • [6] Trading Gold Future with ARIMA-GARCH model
    Sopipan, Nop
    [J]. THAI JOURNAL OF MATHEMATICS, 2018, : 227 - 238
  • [7] Forecasting Wind Speed in Peninsular Malaysia: An Application of ARIMA and ARIMA-GARCH Models
    Hussin, Nor Hafizah
    Yusof, Fadhilah
    Jamaludin, Aaishah Radziah
    Norrulashikin, Siti Mariam
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 29 (01): : 31 - 58
  • [8] 基于ARIMA-GARCH模型的现货电价预测
    刘琰
    刑薇
    丁乐群
    徐越
    韩强
    王宇拓
    [J]. 能源技术经济, 2012, 24 (02) : 59 - 63
  • [9] Dynamics of Unemployment Insurance Claims: An Application of ARIMA-GARCH Models
    Mohammadi H.
    Rich D.P.
    [J]. Atlantic Economic Journal, 2013, 41 (4) : 413 - 425
  • [10] Option Pricing with Arima-Garch Models of Underlying Asset Returns
    Ogneva D.S.
    Golembiovskii D.Y.
    [J]. Computational Mathematics and Modeling, 2018, 29 (4) : 461 - 473