Spatiotemporal heterogeneity of net primary productivity and response to climate change in the mountain regions of southwest China

被引:27
|
作者
Wang, Yahui [1 ]
Dai, Erfu [1 ,2 ]
Wu, Chunsheng [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Lhasa Plateau Ecosyst Res Stn, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划;
关键词
Net primary production (NPP); Climate changes; Hengduan Mountain region; Monthly scale; Time lag effect; GLOBAL TERRESTRIAL ECOSYSTEMS; RIVER-BASIN; VEGETATION COVERAGE; DRIVING FORCES; VARIABILITY; SENSITIVITY; GRASSLAND; SATELLITE; DYNAMICS; PATTERNS;
D O I
10.1016/j.ecolind.2021.108273
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Monitoring changes in the net primary productivity (NPP) of vegetation and its response to climatic changes is integral to gain insight into the carbon cycle mechanism and facilitate human well-being. Nonetheless, past studies lacked a month-scaled exploration and largely ignored spatial heterogeneity of the time lag effect. In this study, we focused on the Hengduan Mountain region situated in southwest China and analyzed the variation of NPP and its main driving mechanisms during 2000-2016. Our results revealed that: (1) The annual NPP signified a slightly increasing trend. On the grid-scale, the variation region of NPP was mainly characterized by increasing trends in most of the growth stages, except for July. (2) The response of NPP to climate change presented obvious spatial heterogeneity and complexity. The increasing NPP of the growing season in the northeast part and areas around Xichang can be attributed to temperature rising, while the increase of temperature in the central valleys led to a decline in NPP. Furthermore, decreasing precipitation led to the decrease in NPP in the western valleys. Thus, adequate water should be provided for the vegetation in western valley, and drought-tolerant plants should be choice in the central valley. (3) Changes in NPP were more influenced by temperature than precipitation, which was more evident on monthly scale, especially during April and May, and for the southeast and northeast part in June and August. (4) The lag time of NPP variation in relation to temperature changes was shorter than that of precipitation in most growth stages, indicating that NPP is more sensitive to temperature. In the colder region or growth stages, the lagged time of the response of NPP to temperature was shorter, which was more obvious on the monthly scale. This research will have important implications for ecosystem management.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Spatiotemporal Change of Net Primary Productivity and Its Response to Climate Change in Temperate Grasslands of China
    Ma, Rong
    Xia, Chunlin
    Liu, Yiwen
    Wang, Yanji
    Zhang, Jiaqi
    Shen, Xiangjin
    Lu, Xianguo
    Jiang, Ming
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Response of grassland net primary productivity to climate change in China
    Zhao, Yuting
    Lin, Huilong
    Rong Tang
    Pu, Yanfei
    Xiong, Xiaoyu
    Nyandwi, Charles
    Nzabonakuze, Jean de Dieu
    Zhang, Yonghui
    Jin, Jiaming
    Han Tianhu
    RANGELAND JOURNAL, 2021, 43 (06): : 339 - 352
  • [3] Impacts of climate change on net primary productivity in arid and semiarid regions of China
    Hao Wang
    Guohua Liu
    Zongshan Li
    Xin Ye
    Meng Wang
    Li Gong
    Chinese Geographical Science, 2016, 26 : 35 - 47
  • [4] Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China
    WANG Hao
    LIU Guohua
    LI Zongshan
    YE Xin
    WANG Meng
    GONG Li
    Chinese Geographical Science, 2016, 26 (01) : 35 - 47
  • [5] Impacts of climate change on net primary productivity in arid and semiarid regions of China
    Wang Hao
    Liu Guohua
    Li Zongshan
    Ye Xin
    Wang Meng
    Gong Li
    CHINESE GEOGRAPHICAL SCIENCE, 2016, 26 (01) : 35 - 47
  • [6] Evaluating the dynamics of grassland net primary productivity in response to climate change in China
    Liu, Yangyang
    Zhou, Ronglei
    Ren, Hanyu
    Zhang, Wei
    Zhang, Zhixin
    Zhang, Zhaoying
    Wen, Zhongming
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 28
  • [7] Spatiotemporal variations of Alxa national public welfare forest net primary productivity in northwest China and the response to climate change
    Xi, Haiyang
    Feng, Qi
    Cheng, Wenju
    Si, Jianhua
    Yu, Tengfei
    ECOHYDROLOGY, 2022, 15 (08)
  • [8] Spatiotemporal Variation of Net Primary Productivity and Its Response to Climate Change and Human Activities in the Yangtze River Delta, China
    Li, Dengpan
    Tian, Lei
    Li, Mingyang
    Li, Tao
    Ren, Fang
    Tian, Chunhong
    Yang, Ce
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [9] Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China附视频
    WANG Hao
    LIU Guohua
    LI Zongshan
    YE Xin
    WANG Meng
    GONG Li
    Chinese Geographical Science, 2016, (01) : 35 - 47
  • [10] Model of the net primary productivity of terrestrial ecosystems in china and its response to climate change
    Zheng, Y. R.
    Xie, Z. X.
    Jiang, L. H.
    Chen, L. J.
    Yu, Y. J.
    Zhou, G. S.
    Shimizu, H.
    PHYTON-ANNALES REI BOTANICAE, 2005, 45 (04) : 193 - 200