The critical exponent for a time fractional diffusion equation with nonlinear memory

被引:13
|
作者
Zhang, Quanguo [1 ]
Li, Yaning [2 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
关键词
blow-up; Fujita critical exponent; global existence; nonlinear memory; time fractional diffusion equation; ABSTRACT CAUCHY-PROBLEM; WAVE-EQUATIONS; DYNAMICS;
D O I
10.1002/mma.5169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine the Fujita critical exponent of the following time fractional subdiffusion equation with nonlinear memory {C0 D.. t u -. u = 0I1-.. t ( | u| p- 1u), x. RN, t > 0, u( 0, x) = u0( x), x. RN, where 0 <.. < 1, 0 =.. < 1,.. =.., p > 1, u0. C0 ( RN), 0I1-.. t denotes left Riemann- Liouville fractional integral of order 1 -... Let.. = 1 -... We prove that, if 1 < p = p* = max {1 + 2(.. +..) [ 2+.. N- 2(.. +..)]+, 1..}, any nontrivial positive solution blows up in a finite time. If p > p* and || u0|| Lqc ( RN) is sufficiently small, where qc = N.. ( p- 1) 2(.. +..), then u exists globally.
引用
收藏
页码:6443 / 6456
页数:14
相关论文
共 50 条
  • [1] The critical exponents for a time fractional diffusion equation with nonlinear memory in a bounded domain
    Zhang, Quanguo
    Li, Yaning
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 92 : 1 - 7
  • [2] Second critical exponent for a nonlinear nonlocal diffusion equation
    Yang, Jinge
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 81 : 57 - 62
  • [3] Nonlinear Memory Term for Fractional Diffusion Equation
    Ayad, Abderrahmane
    Djaouti, Abdelhamid Mohammed
    Benmeriem, Khaled
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [4] Critical exponent of the fractional Langevin equation
    Burov, S.
    Barkai, E.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [5] ASYMPTOTIC-BEHAVIOR OF NONLINEAR DIFFUSION ABSORPTION EQUATION WITH CRITICAL EXPONENT
    VAZQUEZ, JL
    GALAKTIONOV, VA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1990, 314 (03): : 530 - 534
  • [6] A numerical approach for nonlinear time-fractional diffusion equation with generalized memory kernel
    Seal, Aniruddha
    Natesan, Srinivasan
    [J]. NUMERICAL ALGORITHMS, 2023, 97 (2) : 539 - 565
  • [7] ON THE CRITICAL EXPONENTS FOR A FRACTIONAL DIFFUSION-WAVE EQUATION WITH A NONLINEAR MEMORY TERM IN A BOUNDED DOMAIN
    Zhang, Quan-Guo
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 455 - 480
  • [8] Fractional nonlinear diffusion equation and first passage time
    Wang, Jun
    Zhang, Wen-Jun
    Liang, Jin-Rong
    Xiao, Han-Bin
    Ren, Fu-Yao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (04) : 764 - 772
  • [9] On the fractional Kirchhoff equation with critical Sobolev exponent
    Yang, Zhipeng
    Zhai, Hao
    Zhao, Fukun
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 141
  • [10] ANALYSIS OF THE TIME FRACTIONAL NONLINEAR DIFFUSION EQUATION FROM DIFFUSION PROCESS
    Liu, Jian-Gen
    Yang, Xiao-Jun
    Feng, Yi-Ying
    Zhang, Hong-Yi
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 1060 - 1072