Model for optimizing quantum key distribution with continuous-wave pumped entangled-photon sources

被引:24
|
作者
Neumann, Sebastian Philipp [1 ,2 ]
Scheidl, Thomas [1 ,2 ]
Selimovic, Mirela [1 ,2 ]
Pivoluska, Matej [1 ,3 ,4 ]
Liu, Bo [5 ]
Bohmann, Martin [1 ,2 ]
Ursin, Rupert [1 ,2 ]
机构
[1] Inst Quantum Opt & Quantum Informat Vienna, Boltzmanngasse 3, A-1090 Vienna, Austria
[2] Vienna Ctr Quantum Sci & Technol, Boltzmanngasse 5, A-1090 Vienna, Austria
[3] Masaryk Univ, Inst Comp Sci, Brno 60200, Czech Republic
[4] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[5] NUDT, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
CRYPTOGRAPHY; COMMUNICATION;
D O I
10.1103/PhysRevA.104.022406
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution (QKD) allows unconditionally secure communication based on the laws of quantum mechanics rather than assumptions about computational hardness. Optimizing the operation parameters of a given QKD implementation is indispensable in order to achieve high secure key rates. So far, there exists no model that accurately describes entanglement-based QKD with continuous-wave pump lasers. We analyze the underlying mechanisms for QKD with temporally uniform pair-creation probabilities and develop a simple but accurate model to calculate optimal tradeoffs for maximal secure key rates. In particular, we find an optimization strategy of the source brightness for given losses and detection-time resolution. All experimental parameters utilized by the model can be inferred directly in standard QKD implementations, and no additional assessment of device performance is required. Comparison with experimental data shows the validity of our model. Our results yield a tool to determine optimal operation parameters for already existing QKD systems, to plan a full QKD implementation from scratch, and to determine fundamental key rate and distance limits of given connections.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Realistic and general model for quantum key distribution with entangled-photon sources
    Zhong, Zhen-Qiu
    Wang, Shuang
    Zhan, Xiao-Hai
    Yin, Zhen-Qiang
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [2] Quantum key distribution with entangled photon sources
    Ma, Xiongfeng
    Fung, Chi-Hang Fred
    Lo, Hoi-Kwong
    PHYSICAL REVIEW A, 2007, 76 (01):
  • [3] Quantum key distribution using entangled-photon trains with no basis selection
    Inoue, K
    Takesue, H
    PHYSICAL REVIEW A, 2006, 73 (03):
  • [4] High-fidelity entangled-photon link for quantum key distribution testbed
    Di Giuseppe, G
    Sergienko, AV
    Salehl, BEA
    Teich, MC
    QUANTUM INFORMATION AND COMPUTATION, 2003, 5105 : 39 - 50
  • [5] Single-Photon and Entangled-Photon Sources for Quantum Information
    Ritchie, D. A.
    Stevenson, R. M.
    Young, R. J.
    Hudson, A. J.
    Salter, C.
    Ellis, D. J. P.
    Bennett, A. J.
    Atkinson, P.
    Cooper, K.
    Farrer, I.
    Nicoll, C. A.
    Shields, A. J.
    PROCEEDINGS OF 2010 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS AND DEVICES (COMMAND 2010), 2010, : 229 - 229
  • [6] Design and Packaging of a Compact Entangled-Photon Source for Space Quantum Key Distribution
    Bremner, D.
    Lee, S. T.
    Dorward, W.
    Robertson, S.
    Caspani, L.
    Sorensen, S.
    McKnight, L.
    SOLID STATE LASERS XXVIII: TECHNOLOGY AND DEVICES, 2019, 10896
  • [7] Entanglement-based quantum key distribution without an entangled-photon source
    Inoue, K.
    Santori, C.
    Waks, E.
    Yamamoto, Y.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (06): : 623191 - 623194
  • [8] Entanglement-based quantum key distribution without an entangled-photon source
    Inoue, K
    Santori, C
    Waks, E
    Yamamoto, Y
    PHYSICAL REVIEW A, 2003, 67 (06):
  • [9] Advances in entangled-photon sources and single-photon avalanche diodes for quantum technologies in the SWIR
    Rutz, Frank
    Passow, Thorsten
    Woerl, Andreas
    Mueller, Raphael
    Yang, Quankui
    Leidel, Vivienne
    Baechle, Andreas
    Diwo-Emmer, Elke
    Niemasz, Jasmin
    Giudicatti, Silvia
    Daumer, Volker
    Rehm, Robert
    ADVANCED PHOTON COUNTING TECHNIQUES XVIII, 2024, 13025
  • [10] Optically-pumped continuous-wave terahertz sources
    Latzel, Philipp
    Pavanello, Fabio
    Peytavit, Emilien
    Zaknoune, Mohammed
    Ducournau, Guillaume
    Wallart, Xavier
    Lampin, Jean-Francois
    QUANTUM SENSING AND NANOPHOTONIC DEVICES XII, 2015, 9370