Self-Domain Adaptation for Face Anti-Spoofing

被引:0
|
作者
Wang, Jingjing [1 ]
Zhang, Jingyi [1 ]
Bian, Ying [1 ]
Cai, Youyi [1 ]
Wang, Chunmao [1 ]
Pu, Shiliang [1 ]
机构
[1] Hikvis Res Inst, Hangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although current face anti-spoofing methods achieve promising results under intra-dataset testing, they suffer from poor generalization to unseen attacks. Most existing works adopt domain adaptation (DA) or domain generalization (DG) techniques to address this problem. However, the target domain is often unknown during training which limits the utilization of DA methods. DG methods can conquer this by learning domain invariant features without seeing any target data. However, they fail in utilizing the information of target data. In this paper, we propose a self-domain adaptation framework to leverage the unlabeled test domain data at inference. Specifically, a domain adaptor is designed to adapt the model for test domain. In order to learn a better adaptor, a meta-learning based adaptor learning algorithm is proposed using the data of multiple source domains at the training step. At test time, the adaptor is updated using only the test domain data according to the proposed unsupervised adaptor loss to further improve the performance. Extensive experiments on four public datasets validate the effectiveness of the proposed method.
引用
收藏
页码:2746 / 2754
页数:9
相关论文
共 50 条
  • [1] Generative Domain Adaptation for Face Anti-Spoofing
    Zhou, Qianyu
    Zhang, Ke-Yue
    Yao, Taiping
    Yi, Ran
    Sheng, Kekai
    Ding, Shouhong
    Ma, Lizhuang
    [J]. COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 335 - 356
  • [2] Unsupervised Domain Adaptation for Face Anti-Spoofing
    Li, Haoliang
    Li, Wen
    Cao, Hong
    Wang, Shiqi
    Huang, Feiyue
    Kot, Alex C.
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (07) : 1794 - 1809
  • [3] Unsupervised Compound Domain Adaptation for Face Anti-Spoofing
    Panwar, Ankush
    Singh, Pratyush
    Saha, Suman
    Paudel, Danda Pani
    Van Gool, Luc
    [J]. 2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [4] FACE ANTI-SPOOFING BASED ON MULTI-LAYER DOMAIN ADAPTATION
    Zhou, Fengshun
    Gao, Chenqiang
    Chen, Fang
    Li, Chaoyu
    Li, Xindou
    Yang, Feng
    Zhao, Yue
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 192 - 197
  • [5] Source-Free Domain Adaptation With Domain Generalized Pretraining for Face Anti-Spoofing
    Liu, Yuchen
    Chen, Yabo
    Dai, Wenrui
    Gou, Mengran
    Huang, Chun-Ting
    Xiong, Hongkai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) : 5430 - 5448
  • [6] Source-Free Domain Adaptation with Contrastive Domain Alignment and Self-supervised Exploration for Face Anti-spoofing
    Liu, Yuchen
    Chen, Yabo
    Dai, Wenrui
    Gou, Mengran
    Huang, Chun-Ting
    Xiong, Hongkai
    [J]. COMPUTER VISION, ECCV 2022, PT XII, 2022, 13672 : 511 - 528
  • [7] Towards Unsupervised Domain Generalization for Face Anti-Spoofing
    Liu, Yuchen
    Chen, Yabo
    Gou, Mengran
    Huang, Chun-Ting
    Wang, Yaoming
    Dai, Wenrui
    Xiong, Hongkai
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 20597 - 20607
  • [8] Face anti-spoofing methods
    Parveen, Sajida
    Ahmad, Sharifah Mumtazah Syed
    Hanafi, Marsyita
    Adnan, Wan Azizun Wan
    [J]. CURRENT SCIENCE, 2015, 108 (08): : 1491 - 1500
  • [9] Surveillance Face Anti-Spoofing
    Fang, Hao
    Liu, Ajian
    Wan, Jun
    Escalera, Sergio
    Zhao, Chenxu
    Zhang, Xu
    Li, Stan Z.
    Lei, Zhen
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1535 - 1546
  • [10] Towards face anti-spoofing
    Syed, Muhammad Ibrahim
    Asif, Amina
    Shahzad, Mohsin
    Khan, Uzair
    Khan, Sumair
    Mahmood, Zahid
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2023,