Feature-Driven Multilayer Visualization for Remotely Sensed Hyperspectral Imagery

被引:16
|
作者
Cai, Shangshu [1 ]
Du, Qian [2 ,3 ]
Moorhead, Robert J. [2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Ctr Risk Studies & Safety, Goleta, CA 93117 USA
[2] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[3] Mississippi State Univ, High Performance Comp Collaboratory, Geosyst Res Inst, Mississippi State, MS 39762 USA
来源
关键词
Hyperspectral image visualization; mixed-pixel visualization; multilayer visualization; SPECTRAL MIXTURE ANALYSIS; DISPLAY; QUANTIFICATION; QUALITY; FUSION;
D O I
10.1109/TGRS.2010.2047021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Displaying the abundant information contained in a remotely sensed hyperspectral image is a challenging problem. Currently, no approach can satisfactorily render the desired information at arbitrary levels of detail. In this paper, we present a feature-driven multilayer visualization technique that automatically chooses data visualization techniques based on the spatial distribution and importance of the endmembers. It can simultaneously visualize the overall material distribution, subpixel level details, and target pixels and materials. By incorporating interactive tools, different levels of detail can be presented per users' request. This scheme employs five layers from the bottom to the top: the background layer, data-driven spot layer, pie-chart layer, oriented sliver layer, and anomaly layer. The background layer provides the basic tone of the display; the data-driven spot layer manifests the overall material distribution in an image scene; the pie-chart layer presents the precise abundances of endmember materials in each pixel; the oriented sliver layer emphasizes the distribution of important anomalous materials; and the anomaly layer highlights anomaly pixels (i.e., potential targets). Displays of the airborne AVIRIS data and spaceborne Hyperion data demonstrate that the proposed multilayer visualization scheme can efficiently display more information globally and locally.
引用
收藏
页码:3471 / 3481
页数:11
相关论文
共 50 条
  • [1] An Improved Atmospheric Correction Algorithm for Hyperspectral Remotely Sensed Imagery
    Liang, Shunlin
    Fang, Hongliang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (02) : 112 - 117
  • [2] A New Digital Repository for Remotely Sensed Hyperspectral Imagery on GPUs
    Sevilla, Jorge
    Plaza, Antonio
    [J]. 2013 15TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2013), 2014, : 473 - 480
  • [3] MULTISCALE SPATIAL SPARSE UNMIXING FOR REMOTELY SENSED HYPERSPECTRAL IMAGERY
    Zheng, Jiajun
    Liang, Huqing
    Zhang, Shaoquan
    Li, Fan
    Lai, Pengfei
    Wang, Shengqian
    Deng, Chengzhi
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5894 - 5897
  • [4] Feature-Driven Active Learning for Hyperspectral Image Classification
    Liu, Chenying
    He, Lin
    Li, Zhetao
    Li, Jun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 341 - 354
  • [5] Experiments on feature extraction in remotely sensed hyperspectral image data
    Zortea, M
    Haertel, V
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 964 - 967
  • [6] Shoreline feature extraction from remotely-sensed imagery
    Loos, EA
    Niemann, KO
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 3417 - 3419
  • [7] Feature Selection Parallel Technique for Remotely Sensed Imagery Classification
    LeKhac, NhienAn
    Wu, Bo
    Chen, ChongCheng
    Kechadi, M-Tahar
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2013, PT II, 2013, 7972 : 623 - 634
  • [8] SUPERPIXEL-GUIDED SPARSE UNMIXING FOR REMOTELY SENSED HYPERSPECTRAL IMAGERY
    Zhang, Shaoquan
    Deng, Chengzhi
    Li, Jun
    Wang, Shengqian
    Li, Fan
    Xu, Chenguang
    Plaza, Antonio
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2155 - 2158
  • [9] ANN classification of OMIS hyperspectral remotely sensed imagery: Experiments and analysis
    Du, Peijun
    Tan, Kun
    Zhang, Wei
    Yan, Zhigang
    [J]. CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 692 - 696
  • [10] A feature-driven approach to locating optimal viewpoints for volume visualization
    Takahashi, S
    Fujishiro, I
    Takeshima, Y
    Nishita, T
    [J]. IEEE VISUALIZATION 2005, PROCEEDINGS, 2005, : 495 - 502