The flow beneath a periodic travelling surface water wave

被引:18
|
作者
Constantin, Adrian [1 ,2 ]
机构
[1] Kings Coll London, Dept Math, Strand WC2R 2LS, England
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
water waves; hydrodynamics; vorticity; PARTICLE TRAJECTORIES; STOKES WAVES; PRESSURE MEASUREMENTS; GRAVITY-WAVES; CONSTANT VORTICITY; FINITE DEPTH; EXTREME FORM; STEADY; CONJECTURE; REGULARITY;
D O I
10.1088/1751-8113/48/14/143001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss some recent results on the behaviour of the velocity field, pressure and particle trajectories beneath a periodic travelling wave propagating at the surface of water with a flat bed, in a flow without underlying currents. By analysing the governing equations we avoid approximations, thus ensuring the validity of the results without restrictions on the wave amplitude. In particular, the presented approach applies to waves of large amplitude. We also formulate some open problems, venturing into the relatively unexplored field of wave-current interactions.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Periodic travelling wave solutions of a curvature flow equation in the plane
    Lou, Bendong
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (03) : 365 - 377
  • [2] Periodic travelling wave solutions of nonlinear wave equations
    Shi, YM
    Li, TT
    Qin, TH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (07) : 917 - 923
  • [3] The pressure field beneath intense surface water wave groups
    Slunyaev, A.
    Pelinovsky, E.
    Hsu, H. -C.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2018, 67 : 25 - 34
  • [4] PERIODIC TRAVELLING-WAVE SOLUTION OF BRUSSELATOR
    冯贝叶
    [J]. Acta Mathematicae Applicatae Sinica, 1988, (04) : 324 - 332
  • [5] Travelling and periodic wave solutions of some nonlinear wave equations
    Khater, AH
    Hassan, AA
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (7-8): : 389 - 396
  • [6] FROM PERIODIC TRAVELLING WAVES TO SOLITONS OF A 2D WATER WAVE SYSTEM
    Quintero, Jose R.
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2014, 21 (02) : 241 - 264
  • [7] ON THE EXISTENCE AND COMPUTATION OF PERIODIC TRAVELLING WAVES FOR A 2D WATER WAVE MODEL
    Raul Quintero, Jose
    Munoz Grajales, Juan Carlos
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (02) : 557 - 578
  • [8] Surface wave propagation in shallow water beneath an inhomogeneous ice cover
    Marchenko, AV
    Voliak, KI
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 1997, 27 (08) : 1602 - 1613
  • [9] Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow
    Rawat, Subhandu
    Cossu, Carlo
    Rincon, Francois
    [J]. COMPTES RENDUS MECANIQUE, 2016, 344 (06): : 448 - 455
  • [10] Travelling wave states in pipe flow
    Ozcakir, Ozge
    Tanveer, Saleh
    Hall, Philip
    Overman, Edward A., II
    [J]. JOURNAL OF FLUID MECHANICS, 2016, 791 : 284 - 328