Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application

被引:27
|
作者
Abraime, B. [1 ,2 ]
Tamerd, M. Ait [2 ]
Mahmoud, A. [3 ]
Boschini, F. [3 ]
Benyoussef, A. [1 ,2 ]
Hamedoun, M. [1 ]
Xiao, Y. [4 ,5 ]
El Kenz, A. [2 ]
Mounkachi, O. [1 ]
机构
[1] MAScIR Moroccan Fdn Adv Sci Innovat & Res, Mat & Nanomat Ctr, BP 10100, Rabat, Morocco
[2] Mohammed V Univ, Fac Sci, Lab Condensed Matter & Interdisciplinary Sci LaMC, BP 1014, Rabat, Morocco
[3] Univ Liege, Inst Chem B6, CESAM, GREENMAT, B-4000 Liege, Belgium
[4] Streumethoden Forschungszentrum Julich GmbH, JCNS, Frankfurt, Germany
[5] Streumethoden Forschungszentrum Julich GmbH, PGI JCNS 2, PGI 4, Frankfurt, Germany
关键词
Strontium M-type hexagonal ferrites; Permanent magnet; Magnetic properties; Ab-initio calculations; ANNEALING TEMPERATURE; ELECTRICAL-PROPERTIES; PARTICLES; COPRECIPITATION; NANOPARTICLES;
D O I
10.1016/j.ceramint.2017.08.187
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strontium M-type hexagonal ferrites were synthesized at different calcination temperatures (800 degrees C, 1000 degrees C and 1100 degrees C) using sol-gel autocombustion method. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Mossbauer spectroscopy (MS) and superconducting quantum interference device magnetometer (SQUID) techniques were used to characterize crystal structure, phase composition, morphology and magnetic properties. TGA gives T = 800 degrees C as beginning of suitable calcination. Hexaferrite structure of single phase is obtained according to XRD results for all samples with crystallite size between 28 nm and 35 nm. SEM images show the growth of grain size with increasing of annealing temperature. (BH)(max) is calculated based on SQUID results and shows an enhancement between T = 800 degrees C and T = 1000 degrees C of 25%. The magnetic properties observed at low temperature are explained and confirmed by ab-initio calculations.
引用
收藏
页码:15999 / 16006
页数:8
相关论文
共 50 条
  • [1] Reactive flash sintering of SrFe12O19 ceramic permanent magnets
    Manchón-Gordón, A.F.
    Sánchez-Jiménez, P.E.
    Blázquez, J.S.
    Perejón, A.
    Pérez-Maqueda, L.A.
    Journal of Alloys and Compounds, 2022, 922
  • [2] Reactive flash sintering of SrFe12O19 ceramic permanent magnets
    Manchon-Gordon, A. F.
    Sanchez-Jimenez, P. E.
    Blazquez, J. S.
    Perejon, A.
    Perez-Maqueda, L. A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [3] Effect of SrFe12O19 nanopowder on the hydrogen sorption properties of MgH2
    Mustafa, N. S.
    Sulaiman, N. N.
    Ismail, M.
    RSC ADVANCES, 2016, 6 (111): : 110004 - 110010
  • [4] Investigation on magnetic properties of FeSiAl/SrFe12O19 composites
    J. L. Ni
    S. J. Zhu
    S. J. Feng
    X. C. Kan
    X. S. Liu
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 16956 - 16960
  • [5] Investigation on magnetic properties of FeSiAl/SrFe12O19 composites
    Ni, J. L.
    Zhu, S. J.
    Feng, S. J.
    Kan, X. C.
    Liu, X. S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (12) : 16956 - 16960
  • [6] In situ growth of SrFe12O19
    Granados, C.
    Bojesen, E.
    Jensen, K.
    Christensen, M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C505 - C505
  • [7] TRANSPARENT BAFE12O19 AND SRFE12O19
    BRIXNER, LH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (16) : 4424 - 4424
  • [8] Mechanochemical treatment of SrFe12O19 -: Microstructural investigation by neutron diffraction
    Hofmann, M
    Campbell, SJ
    Wu, E
    Kaczmarek, WA
    Dahlborg, M
    Dahlborg, U
    EPDIC 7: EUROPEAN POWDER DIFFRACTION, PTS 1 AND 2, 2001, 378-3 : 765 - 770
  • [9] NONISOTHERMAL SINTERING OF SRFE12O19 FERRITE
    TENG, SC
    CHIEN, YT
    KO, YC
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1995, 14 (07) : 519 - 522
  • [10] Magnetization reversal and interactions in SrFe12O19
    Cristina Faloh-Gandarilla, Jael
    Diaz-Castanon, Sergio
    Watts, Bernard Enrico
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (04):