Conformable fractional integral inequalities for GG- and GA-convex functions

被引:47
|
作者
Khurshid, Yousaf [1 ]
Khan, Muhammad Adil [1 ]
Chu, Yu-Ming [2 ,3 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
关键词
GG-convex function; GA-convex function; Hermite-Hadamard inequality; conformable fractional integral; COMPLETE ELLIPTIC INTEGRALS; POWER MEAN INEQUALITY; HARMONIC CONVEXITIES; CONCAVITY;
D O I
10.3934/math.2020322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article,we present several new Hermite-Hadamard type inequalities for GG- and GA-convex functions via the conformable fractional integrals. Our results are the generalizations of some previously known results.
引用
收藏
页码:5012 / 5030
页数:19
相关论文
共 50 条
  • [1] NEW OSTROWSKI LIKE INEQUALITIES FOR GG-CONVEX AND GA-CONVEX FUNCTIONS
    Ardic, Merve Avci
    Akdemir, Ahmet Ocak
    Set, Erhan
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1159 - 1168
  • [2] Conformable Integral Inequalities of the Hermite-Hadamard Type in terms of GG- and GA-Convexities
    Khurshid, Yousaf
    Adil Khan, Muhammad
    Chu, Yu-Ming
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [3] Integral inequalities of the Hermite-Hadamard type for (α, m)-GA-convex functions
    Shuang, Ye
    Qi, Feng
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1854 - 1860
  • [4] Integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions
    Ji, Ai-Ping
    Zhang, Tian-Yu
    Qi, Feng
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 255 - 265
  • [5] Integral inequalities for s-convex functions via generalized conformable fractional integral operators
    Kashuri, Artion
    Iqbal, Sajid
    Liko, Rozana
    Gao, Wei
    Samraiz, Muhammad
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] Integral inequalities for s-convex functions via generalized conformable fractional integral operators
    Artion Kashuri
    Sajid Iqbal
    Rozana Liko
    Wei Gao
    Muhammad Samraiz
    [J]. Advances in Difference Equations, 2020
  • [7] Weighted Simpson's type inequalities for GA-convex functions
    Latif, Muhammad Amer
    Hussain, Sabir
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (10): : 93 - 106
  • [8] Maclaurin-Type Integral Inequalities for GA-Convex Functions Involving Confluent Hypergeometric Function via Hadamard Fractional Integrals
    Chiheb, Tarek
    Meftah, Badreddine
    Moumen, Abdelkader
    Bouye, Mohamed
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [9] Hermite-Hadamard's Integral Inequalities of (a, s)-GA- and (a, s, m)-GA-Convex Functions
    Wang, Jing-Yu
    Yin, Hong-Ping
    Sun, Wen-Long
    Guo, Bai-Ni
    [J]. AXIOMS, 2022, 11 (11)
  • [10] New Conformable Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions
    Mohammed, Pshtiwan Othman
    Hamasalh, Faraidun Kadir
    [J]. SYMMETRY-BASEL, 2019, 11 (02):