Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy

被引:35
|
作者
Cui, Senlin [1 ]
Ouyang, Gaoyuan [2 ]
Ma, Tao [3 ]
Macziewski, Chad R. [2 ]
Levitas, Valery I. [1 ,2 ,3 ,4 ]
Zhou, Lin [3 ]
Kramer, Matthew J. [3 ]
Cui, Jun [2 ,3 ]
机构
[1] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[3] Ames Lab, Dept Energy, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
关键词
Fe-6.5 wt.% Si; Melt spinning; Quenching; Diffusion; Domain growth; ORDER-DISORDER TRANSITION; HIGH-SILICON STEEL; ELECTRICAL APPLICATIONS; ATOMIC MOBILITY; NI ALLOYS; FE; DIFFUSION; PHASE; INTERDIFFUSION; SYSTEMS;
D O I
10.1016/j.jallcom.2018.08.293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The microstructural evolution of Fe-6.5 wt.% Si alloy during rapid solidification was studied over a quenching rate of 4 x 10(4) K/s to 8 x 10(5) K/s. The solidification and solid-state diffusional transformation processes during rapid cooling were analyzed via thermodynamic and kinetic calculations. The Allen-Cahn theory was adapted to model the experimentally measured bcc_B2 antiphase domain sizes under different cooling rates. The model was calibrated based on the experimentally determined bcc_B2 antiphase domain sizes for different wheel speeds and the resulting cooling rates. Good correspondence of the theoretical and experimental data was obtained over the entire experimental range of cooling rates. Along with the asymptotic domain size value at the infinite cooling rates, the developed model represents a reliable extrapolation for the cooling rate > 10(6) K/s and allows one to optimize the quenching process. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:643 / 648
页数:6
相关论文
共 50 条
  • [1] Microstructure and mechanical properties of rapidly quenched Fe-6.5 wt.% Si alloy
    Liang, Y. F.
    Lin, J. P.
    Ye, F.
    Li, Y. J.
    Wang, Y. L.
    Chen, G. L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 504 : S476 - S479
  • [2] Improvement of magnetic properties of an Fe-6.5 wt.% Si alloy by directional solidification
    Fu, Huadong
    Zhang, Zhihao
    Jiang, Yanbin
    Xie, Jianxin
    MATERIALS LETTERS, 2011, 65 (09) : 1416 - 1419
  • [3] Improvement of magnetic properties of an Fe-6.5 wt. % Si alloy by directional recrystallization
    Zhang, Z. W.
    Chen, G.
    Bei, H.
    Ye, F.
    Chen, G. L.
    Liu, C. T.
    APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [4] Microstructure, mechanical and magnetic properties of melt extracted Fe-6.5 wt.%Si microwires
    Wang, Shuai
    Liang, Yongfeng
    Ye, Feng
    Geng, Guihong
    Lin, Junpin
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 249 : 325 - 330
  • [5] AC Iron Loss Prediction and Magnetic Properties of Fe-6.5 wt. % Si Ribbons Prepared by Melt-Spinning
    Wang, Shuai
    Liang, Yongfeng
    Chen, Biao
    Ye, Feng
    Lin, Junpin
    METALS, 2018, 8 (04):
  • [6] Microstructure, Texture Evolution and Magnetic Properties of Fe-6.5 wt. % Si and Fe-6.5 wt. % Si-0.5 wt. % Cu Alloys during Rolling and Annealing Treatment
    Cheng, Zhaoyang
    Liu, Jing
    Zhu, Jiachen
    Xiang, Zhidong
    Jia, Juan
    Bi, Yunjie
    METALS, 2018, 8 (02):
  • [7] Cold rolled Fe-6.5 wt. % Si alloy foils with high magnetic induction
    Fang, X. S.
    Liang, Y. F.
    Ye, F.
    Lin, J. P.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
  • [8] Magnetic properties evaluation of spray formed and rolled Fe-6.5 wt.% Si-1.0 wt.% Al alloy
    Kasama, A. H.
    Bolfarini, C.
    Kiminami, C. S.
    Botta Filho, W. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 449 (375-377): : 375 - 377
  • [9] Hot drawn Fe-6.5 wt.%Si wires with good ductility
    Yang, W.
    Li, H.
    Yang, K.
    Liang, Y. F.
    Yang, J.
    Ye, F.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2014, 186 : 79 - 82
  • [10] Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging
    Han, Chaoyu
    Wen, Shibo
    Ye, Feng
    Wu, Wenjia
    Xue, Shaowei
    Liang, Yongfeng
    Liu, Binbin
    Lin, Junpin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 49 : 25 - 34