The Prediction of the Tibetan Plateau Thermal Condition with Machine Learning and Shapley Additive Explanation
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Tang, Yuheng
[1
,2
]
Duan, Anmin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Duan, Anmin
[1
,2
]
Xiao, Chunyan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Xiao, Chunyan
[1
,2
]
Xin, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
Xin, Yue
[1
,2
]
机构:
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R China
South Asian high;
LightGBM;
XGBoost;
climate prediction;
ATMOSPHERIC HEAT-SOURCE;
ASIAN SUMMER MONSOON;
INTERANNUAL VARIABILITY;
INDIAN-OCEAN;
SNOW COVER;
SOUTH-ASIA;
TEMPERATURE;
ENSO;
PRECIPITATION;
CLIMATE;
D O I:
10.3390/rs14174169
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The thermal condition over the Tibetan Plateau (TP) plays a vital role in the South Asian high (SAH) and the Asian summer monsoon (ASM); however, its prediction skill is still low. Here, two machine learning models are employed to address this problem. Expert knowledge and distance correlation are used to select the predictors from observational datasets. Both linear and nonlinear relationships are considered between the predictors and predictands. The predictors are utilized for training the machine learning models. The prediction skills of the machine learning models are higher than those of two state-of-the-art dynamic operational models and can explain 67% of the variance in the observations. Moreover, the SHapley Additive exPlanation method results indicate that the important predictors are mainly from the Southern Hemisphere, Eurasia, and western Pacific, and most show nonlinear relationships with the predictands. Our results can be applied to find potential climate teleconnections and improve the prediction of other climate signals.
机构:
Saiseikai Kumamoto Hosp, Kumamoto, JapanKyushu Univ Hosp, Fukuoka, Japan
Matsumoto, Koutarou
Soejima, Hidehisa
论文数: 0引用数: 0
h-index: 0
机构:
Saiseikai Kumamoto Hosp, Kumamoto, JapanKyushu Univ Hosp, Fukuoka, Japan
Soejima, Hidehisa
论文数: 引用数:
h-index:
机构:
Nakashima, Naoki
[J].
ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS,
2019,
: 546
-
546
机构:North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
Tan, Shiteng
Wang, Ruikun
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R ChinaNorth China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
Wang, Ruikun
Song, Gaoke
论文数: 0引用数: 0
h-index: 0
机构:North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
Song, Gaoke
Qi, Shulong
论文数: 0引用数: 0
h-index: 0
机构:North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
Qi, Shulong
Zhang, Kai
论文数: 0引用数: 0
h-index: 0
机构:North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
Zhang, Kai
Zhao, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
Zhao, Zhenghui
Yin, Qianqian
论文数: 0引用数: 0
h-index: 0
机构:North China Elect Power Univ, Dept Power Engn, Baoding 071003, Hebei, Peoples R China
机构:
COMSATS Univ Islamabad, Civil Engn Dept, Abbottabad Campus, Abbottabad 22060, PakistanPrince Sattam bin Abdulaziz Univ, Coll Engn Al Kharj, Dept Civil Engn, Al Kharj 11942, Saudi Arabia
Khan, Majid
Taha, Abubakr Taha Bakheit
论文数: 0引用数: 0
h-index: 0
机构:
Prince Sattam bin Abdulaziz Univ, Coll Engn Al Kharj, Dept Civil Engn, Al Kharj 11942, Saudi ArabiaPrince Sattam bin Abdulaziz Univ, Coll Engn Al Kharj, Dept Civil Engn, Al Kharj 11942, Saudi Arabia
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
Zheng, Guozhong
Zhang, Yuqin
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
Zhang, Yuqin
Yue, Xuhui
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
Yue, Xuhui
Li, Kang
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China