Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity

被引:8
|
作者
Il'yasov, Yavdat [1 ]
Runst, Thomas [2 ]
机构
[1] Ufa Sci Ctr RAS, Inst Math, Ufa 450077, Russia
[2] Univ Jena, Math Inst, D-07737 Jena, Germany
关键词
supercritical exponent; indefinite sign nonlinearity; extremal point; super- and sub-solutions; SEMILINEAR ELLIPTIC-EQUATIONS; 1ST EIGENVALUE; REGULARITY;
D O I
10.1080/17476933.2011.575461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to the study of the Dirichlet boundary problem for equations with p-Laplacian -Delta(p)u - lambda vertical bar u vertical bar(p-2)u = a(x)vertical bar u vertical bar(q-2)u, in Omega subset of R-n, where n >= 1, 1 < p < q < +infinity, and a(.) may change the sign in Omega. In the main result, we establish necessary and sufficient conditions when the problem possesses a weak positive solution with lambda is an element of[lambda(1), lambda*) where lambda(1) > 0 is the first eigenvalue of the Dirichlet p-Laplacian and lambda* is an extremal point.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 50 条