共 50 条
Positive solutions of indefinite equations with p-Laplacian and supercritical nonlinearity
被引:8
|作者:
Il'yasov, Yavdat
[1
]
Runst, Thomas
[2
]
机构:
[1] Ufa Sci Ctr RAS, Inst Math, Ufa 450077, Russia
[2] Univ Jena, Math Inst, D-07737 Jena, Germany
关键词:
supercritical exponent;
indefinite sign nonlinearity;
extremal point;
super- and sub-solutions;
SEMILINEAR ELLIPTIC-EQUATIONS;
1ST EIGENVALUE;
REGULARITY;
D O I:
10.1080/17476933.2011.575461
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This article is devoted to the study of the Dirichlet boundary problem for equations with p-Laplacian -Delta(p)u - lambda vertical bar u vertical bar(p-2)u = a(x)vertical bar u vertical bar(q-2)u, in Omega subset of R-n, where n >= 1, 1 < p < q < +infinity, and a(.) may change the sign in Omega. In the main result, we establish necessary and sufficient conditions when the problem possesses a weak positive solution with lambda is an element of[lambda(1), lambda*) where lambda(1) > 0 is the first eigenvalue of the Dirichlet p-Laplacian and lambda* is an extremal point.
引用
收藏
页码:945 / 954
页数:10
相关论文