Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird

被引:14
|
作者
Tian, Lucas Y. [1 ,2 ,3 ,4 ]
Brainard, Michael S. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Ctr Integrat Neurosci, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA
关键词
GANGLIA-FOREBRAIN CIRCUIT; BASAL GANGLIA; PREFRONTAL CORTEX; SPEECH PRODUCTION; ZEBRA FINCHES; MOTOR CONTROL; BIRDSONG; TIME; COARTICULATION; VOCALIZATIONS;
D O I
10.1016/j.neuron.2017.10.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motor skills depend on the reuse of individual gestures in multiple sequential contexts (e.g., a single phoneme in different words). Yet optimal performance requires that a given gesture be modified appropriately depending on the sequence in which it occurs. To investigate the neural architecture underlying such context-dependent modifications, we studied Bengalese finch song, which, like speech, consists of variable sequences of "syllables.'' We found that when birds are instructed to modify a syllable in one sequential context, learning generalizes across contexts; however, if unique instruction is provided in different contexts, learning is specific for each context. Using localized inactivation of a cortical-basal ganglia circuit specialized for song, we show that this balance between generalization and specificity reflects a hierarchical organization of neural substrates. Primary motor circuitry encodes a core syllable representation that contributes to generalization, while top-down input from cortical-basal ganglia circuitry biases this representation to enable context-specific learning.
引用
收藏
页码:1168 / +
页数:15
相关论文
共 50 条
  • [1] Context-specific graphical models for discrete longitudinal data
    Edwards, David
    Ankinakatte, Smitha
    [J]. STATISTICAL MODELLING, 2015, 15 (04) : 301 - 325
  • [2] Context-specific learning and its implications for social learning
    Truskanov, Noa
    Shy, Rimon
    Lotem, Arnon
    [J]. BEHAVIORAL ECOLOGY, 2018, 29 (05) : 1046 - 1055
  • [3] Context-specific learning, personality, and birth order
    Harris, JR
    [J]. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE, 2000, 9 (05) : 174 - 177
  • [4] Gender and Context-Specific Effects of Vocal Dominance and Trustworthiness on Leadership Decisions
    Schild, Christoph
    Braunsdorf, Elisa
    Steffens, Katharina
    Pott, Franka
    Stern, Julia
    [J]. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY, 2022, 8 (04) : 538 - 556
  • [5] Learning Markov networks with context-specific independences
    Edera, Alejandro
    Schluter, Federico
    Bromberg, Facundo
    [J]. 2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 553 - 560
  • [6] A New Perspective on Learning Context-Specific Independence
    Shen, Yujia
    Choi, Arthur
    Darwiche, Adnan
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 425 - 436
  • [7] Learning Context-Specific Word/Character Embeddings
    Zheng, Xiaoqing
    Feng, Jiangtao
    Chen, Yi
    Peng, Haoyuan
    Zhang, Wenqing
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3393 - 3399
  • [8] Gender and Context-Specific Effects of Vocal Dominance and Trustworthiness on Leadership Decisions
    Christoph Schild
    Elisa Braunsdorf
    Katharina Steffens
    Franka Pott
    Julia Stern
    [J]. Adaptive Human Behavior and Physiology, 2022, 8 : 538 - 556
  • [9] Generalized framework for context-specific metabolic model extraction methods
    Estevez, Semidan Robaina
    Nikoloski, Zoran
    [J]. FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [10] Context-Specific Representation Abstraction for Deep Option Learning
    Abdulhai, Marwa
    Kim, Dong-Ki
    Riemer, Matthew
    Liu, Miao
    Tesauro, Gerald
    How, Jonathan P.
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 5959 - 5967