Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research

被引:17
|
作者
Khaled, Rana [1 ]
Helal, Maha [1 ]
Alfarghaly, Omar [2 ]
Mokhtar, Omnia [1 ]
Elkorany, Abeer [2 ]
El Kassas, Hebatalla [1 ]
Fahmy, Aly [2 ]
机构
[1] Cairo Univ, Natl Inst Canc, Radiol Dept, Cairo 11796, Egypt
[2] Cairo Univ, Comp Sci Dept, Comp & Artificial Intelligence, Cairo 12613, Egypt
关键词
D O I
10.1038/s41597-022-01238-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Contrast-enhanced spectral mammography (CESM) is a relatively recent imaging modality with increased diagnostic accuracy compared to digital mammography (DM). New deep learning (DL) models were developed that have accuracies equal to that of an average radiologist. However, most studies trained the DL models on DM images as no datasets exist for CESM images. We aim to resolve this limitation by releasing a Categorized Digital Database for Low energy and Subtracted Contrast Enhanced Spectral Mammography images (CDD-CESM) to evaluate decision support systems. The dataset includes 2006 images, with an average resolution of 2355 x 1315, consisting of 310 mass images, 48 architectural distortion images, 222 asymmetry images, 238 calcifications images, 334 mass enhancement images, 184 non-mass enhancement images, 159 postoperative images, 8 post neoadjuvant chemotherapy images, and 751 normal images, with 248 images having more than one finding. This is the first dataset to incorporate data selection, segmentation annotation, medical reports, and pathological diagnosis for all cases. Moreover, we propose and evaluate a DL-based technique to automatically segment abnormal findings in images.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research
    Rana Khaled
    Maha Helal
    Omar Alfarghaly
    Omnia Mokhtar
    Abeer Elkorany
    Hebatalla El Kassas
    Aly Fahmy
    [J]. Scientific Data, 9
  • [2] Artificial Intelligence Applied to Contrast-enhanced Mammography: Exploring Uncharted Territory
    Bahl, Manisha
    Do, Synho
    [J]. RADIOLOGY, 2023, 307 (05)
  • [3] Diagnostic Performance of Contrast-enhanced Mammography: Comparison With MRI and Mammography
    Yuzkan, Sabahattin
    Cengiz, Duygu
    Hekimsoy, Ilhan
    Okcu, Ozlem Sezgin
    Oktay, Aysenur
    [J]. JOURNAL OF BREAST IMAGING, 2021, 3 (04) : 448 - 454
  • [4] Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mammography
    Petrillo, Antonella
    Fusco, Roberta
    Di Bernardo, Elio
    Petrosino, Teresa
    Barretta, Maria Luisa
    Porto, Annamaria
    Granata, Vincenza
    Di Bonito, Maurizio
    Fanizzi, Annarita
    Massafra, Raffaella
    Petruzzellis, Nicole
    Arezzo, Francesca
    Boldrini, Luca
    La Forgia, Daniele
    [J]. CANCERS, 2022, 14 (09)
  • [5] Artificial intelligence-based classification of breast lesion from contrast enhanced mammography: a multicenter study
    Zhang, Haicheng
    Lin, Fan
    Zheng, Tiantian
    Gao, Jing
    Wang, Zhongyi
    Zhang, Kun
    Zhang, Xiang
    Xu, Cong
    Zhao, Feng
    Xie, Haizhu
    Li, Qin
    Cao, Kun
    Gu, Yajia
    Mao, Ning
    [J]. INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (05) : 2593 - 2603
  • [6] Empowering breast cancer diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced mammography
    Kinkar, Ketki K.
    Fields, Brandon K. K.
    Yamashita, Mary W.
    Varghese, Bino A.
    [J]. FRONTIERS IN RADIOLOGY, 2024, 3
  • [7] Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification
    Fusco, Roberta
    Piccirillo, Adele
    Sansone, Mario
    Granata, Vincenza
    Rubulotta, Maria Rosaria
    Petrosino, Teresa
    Barretta, Maria Luisa
    Vallone, Paolo
    Di Giacomo, Raimondo
    Esposito, Emanuela
    Di Bonito, Maurizio
    Petrillo, Antonella
    [J]. DIAGNOSTICS, 2021, 11 (05)
  • [8] Reply to "Contrast-Enhanced Mammography, a Diagnostic and Follow-Up Method With Potential Research Opportunities"
    Trimboli, Rubina Manuela
    Vatteroni, Giulia
    Bernardi, Daniela
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 220 (02) : 306 - 307
  • [9] A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer
    Petrillo, Antonella
    Fusco, Roberta
    Petrosino, Teresa
    Vallone, Paolo
    Granata, Vincenza
    Rubulotta, Maria Rosaria
    Pariante, Paolo
    Raiano, Nicola
    Scognamiglio, Giosue
    Fanizzi, Annarita
    Massafra, Raffaella
    Lafranceschina, Miria
    La Forgia, Daniele
    Greco, Laura
    Ferranti, Francesca Romana
    De Soccio, Valeria
    Vidiri, Antonello
    Botta, Francesca
    Dominelli, Valeria
    Cassano, Enrico
    Sorgente, Eugenio
    Pecori, Biagio
    Cerciello, Vincenzo
    Boldrini, Luca
    [J]. RADIOLOGIA MEDICA, 2024, 129 (06): : 864 - 878
  • [10] Diagnostic value of contrast-enhanced mammography in the characterization of breast asymmetry
    Bassant Mahmoud Dawoud
    Abdelmonem Nooman Darweesh
    Mohamed Mohamed Hefeda
    Rasha Mohamed Kamal
    Rasha Lotfy Younis
    [J]. Egyptian Journal of Radiology and Nuclear Medicine, 53