Isometric Embeddings of Subsets of Boundaries of Teichmuller Spaces of Compact Hyperbolic Riemann Surfaces

被引:1
|
作者
Hu, Guang Ming [1 ,2 ,3 ]
Qi, Yi [2 ,3 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Teichmuller space; augmented Teichmuller space; Strebel ray; Busemann points; DIFFERENTIALS; BEHAVIOR;
D O I
10.1007/s10114-020-8096-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that every finitely unbranched holomorphic covering pi:(S) over tilde -> S of a compact Riemann surface S with genus g >= 2 induces an isometric embedding phi(pi):Teich(S)-> Teich((S) over tilde). By the mutual relations between Strebel rays in Teich(S) and their embeddings in Teich((S) over tilde), we show that the 1st-strata space of the augmented Teichmuller space (Teich) over cap (S) can be embedded in the augmented Teichmuller space (Teich) over cap((S) over tilde) isometrically. Furthermore, we show that phi(pi) induces an isometric embedding from the set Teich(S) (B) (infinity) consisting of Busemann points in the horofunction boundary of Teich(S) into Teich((S) over tilde )B(infinity) with the detour metric.
引用
收藏
页码:605 / 619
页数:15
相关论文
共 50 条