Dual-Spectral Plasmon-Induced Transparent Terahertz Metamaterial with Independently Tunable Amplitude and Frequency

被引:9
|
作者
Wu, Tong [1 ]
Wang, Guan [1 ]
Jia, Yang [1 ]
Shao, Yabin [2 ]
Chen, Chen [2 ]
Han, Jing [1 ]
Gao, Yang [1 ]
Gao, Yachen [1 ]
机构
[1] Heilongjiang Univ, Elect Engn Coll, Harbin 150080, Peoples R China
[2] East Univ Heilongjiang, Dept Comp & Elect Engn, Harbin 150086, Peoples R China
关键词
plasmon-induced transparency; terahertz; graphene; strontium titanate; slow light; ELECTROMAGNETICALLY-INDUCED TRANSPARENCY; ANALOG; MODULATION;
D O I
10.3390/nano11112876
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A bifunctional tunable metamaterial composed of pattern metal structure, graphene, and strontium titanate (STO) film is proposed and studied numerically and theoretically. The dual plasmon-induced transparency (PIT) window is obtained by coupling the bright state cut wire (CW) and two pairs of dark state dual symmetric semiring resonators (DSSRs) with different parameters. Correspondingly, slow light effect can also be realized. When shifting independently, the Fermi level of the graphene strips, the amplitudes of the two PIT transparency windows and slow light effect can be tuned, respectively. In addition, when independently tuning the temperature of the metamaterial, the frequency of the dual PIT windows and slow light effect can be tuned. The physical mechanism of the dual-PIT was analyzed theoretically by using a three-harmonic oscillator model. The results show that the regulation function of the PIT peak results from the change of the oscillation damping at the dark state DSSRs by tuning conductivity of graphene. Our design presents a new structure to realize the bifunctional optical switch and slow light.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tunable dual-spectral plasmon-induced transparency in terahertz Dirac semimetal metamaterials
    Wang, Qiang-guo
    Gao, Bo
    Wu, Ge
    Tian, Xiao-Jian
    Liu, Lie
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2023, 65 (05) : 1448 - 1455
  • [2] Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Zhou, Chaobiao
    Liu, Yuebo
    Xu, Chen
    Xiao, Shuyuan
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (41)
  • [3] A Tunable Terahertz Graphene Metamaterial Sensor Based on Dual Polarized Plasmon-Induced Transparency
    Chen, Tao
    Liang, Dihan
    Jiang, Weijie
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (14) : 14084 - 14090
  • [4] Optically tunable plasmon-induced transparency in terahertz metamaterial system
    Li, Dan
    Ji, Zijuan
    Luo, Chunya
    [J]. OPTICAL MATERIALS, 2020, 104 (104)
  • [5] Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime
    Huang, Xin
    Yang, Fan
    Gao, Bing
    Yang, Qi
    Wu, Jiamin
    He, Wei
    [J]. OPTICS EXPRESS, 2019, 27 (18) : 25902 - 25911
  • [6] Tunable terahertz group slowing effect with plasmon-induced transparency metamaterial
    Wang, Baoku
    Guo, Tong
    Gai, Ke
    Yan, Fei
    Wang, Ruoxing
    Li, Li
    [J]. APPLIED OPTICS, 2022, 61 (11) : 3218 - 3222
  • [7] Graphene-based tunable terahertz plasmon-induced transparency metamaterial
    Zhao, Xiaolei
    Yuan, Cai
    Zhu, Lin
    Yao, Jianquan
    [J]. NANOSCALE, 2016, 8 (33) : 15273 - 15280
  • [8] Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance
    Ge, Jiahao
    You, Chenglong
    Feng, He
    Li, Xiaoman
    Wang, Mei
    Dong, Lifeng
    Veronis, Georgios
    Yun, Maojin
    [J]. OPTICS EXPRESS, 2020, 28 (21): : 31781 - 31795
  • [9] Quadruple plasmon-induced transparency and tunable multi-frequency switch in monolayer graphene terahertz metamaterial
    Li, Yuhui
    Xu, Yiping
    Jiang, Jiabao
    Ren, Liyong
    Cheng, Shubo
    Yang, Wenxing
    Ma, Chengju
    Zhou, Xianwen
    Wang, Ziyi
    Chen, Zhanyu
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (15)
  • [10] A terahertz sensor based on graphene metamaterial with tunable double plasmon-induced transparency
    Wang, Juncheng
    Tu, Shan
    Chen, Tao
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 155