A 2.5-μW Beyond-the-Rails Current Sensor With a Tunable Voltage Reference and ±0.6% Gain Error From-40 °C to+85 °C

被引:2
|
作者
Zamparette, Roger [1 ]
Makinwa, Kofi [1 ]
机构
[1] Delft Univ Technol, Microelect Dept, NL-2628 CD Delft, Netherlands
来源
关键词
Coulomb-counting; current sensor; FIR-DAC; fully integrated; high-side; hybrid delta-sigma modulator; on-chip shunt resistor; PCB trace shunt resistor;
D O I
10.1109/LSSC.2022.3219214
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a low-power, fully integrated current sensor for Coulomb-counting. It employs a hybrid delta-sigma modulator (AIM) with an FIR-DAC to digitize the voltage drop across a shunt. The modulator's first stage consists of a capacitively coupled chopper amplifier, which enables a beyond-the-rails (-0.3 to 5 V) input common-mode voltage range from a 1.8-V supply. A tunable voltage reference is used to accurately compensate for the large temperature coefficient (similar to 3500 ppm/degrees C) of low-cost metal shunts. With a 20-m Omega on-chip shunt, +/- 2 A currents can be digitized with 0.35% gain error from -40 degrees C to 85 degrees C, after a 1-point trim. With a 3-m Omega PCB trace, currents up to +/- 15 A can be digitized with 0.6% gain error over the same temperature range. Fabricated in a standard 0.18-mu m CMOS process, the sensor occupies 1.6 mm(2) and consumes 2.5 mu W, which is 3x less than the state of the art. It also achieves competitive energy efficiency, with a figure of merit (FoM) of 149 dB.
引用
收藏
页码:264 / 267
页数:4
相关论文
共 11 条
  • [1] A Micropower Battery Current Sensor with ±0.03% (3σ) Inaccuracy from-40 to+85°C
    Shalmany, Saleh Heidary
    Draxelmayr, Dieter
    Makinwa, Kofi A. A.
    2013 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL PAPERS (ISSCC), 2013, 56 : 386 - U552
  • [2] A Fully Integrated ±5A Current-Sensing System with ±0.25% Gain Error and 12μA Offset from-40°C to+85°C
    Shalmany, Saleh Heidary
    Beer, Gottfried
    Draxelmayr, Dieter
    Makinwa, Kofi
    2015 SYMPOSIUM ON VLSI CIRCUITS (VLSI CIRCUITS), 2015,
  • [3] A Versatile ±25-A Shunt-Based Current Sensor With ±0.25% Gain Error From-40 °C to 85 °C
    Tang, Zhong
    Zamparette, Roger
    Furuta, Yoshikazu
    Nezuka, Tomohiro
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (12) : 3716 - 3725
  • [4] Adjustable ±24-A current monitoring for battery applications with ±0.55% gain error from-40°C to 85°C
    Wu, Kaikai
    Wang, Hongyi
    Chen, Chen
    Tao, Tao
    IET POWER ELECTRONICS, 2024,
  • [5] A ±4-A High-Side Current Sensor With 0.9% Gain Error From-40 °C to 85 °C Using an Analog Temperature Compensation Technique
    Xu, Long
    Huijsing, Johan H.
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (12) : 3368 - 3376
  • [6] A +/- 12-A High-Side Current Sensor With 25 V Input CM Range and 0.35% Gain Error From-40 degrees C to 85 degrees C
    Xu, Long
    Shalmany, Saleh Heidary
    Huijsing, Johan H.
    Makinwa, Kofi A. A.
    IEEE SOLID-STATE CIRCUITS LETTERS, 2018, 1 (04): : 94 - 97
  • [7] A ±5 A Integrated Current-Sensing System With ±0.3% Gain Error and 16 μA Offset From-55 °C to+85 °C
    Shalmany, Saleh Heidary
    Draxelmayr, Dieter
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (04) : 800 - 808
  • [8] A ±36A Integrated Current-Sensing System with 0.3% Gain Error and 400μA Offset from-55°C to+85°C
    Shalmany, Saleh Heidary
    Draxelmayr, Dieter
    Makinwa, Kofi
    2016 IEEE SYMPOSIUM ON VLSI CIRCUITS (VLSI-CIRCUITS), 2016,
  • [9] A ±36-A Integrated Current-Sensing System With a 0.3% Gain Error and a 400-μA Offset From-55 °C to+85 °C
    Shalmany, Saleh Heidary
    Draxelmayr, Dieter
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) : 1034 - 1043
  • [10] A ±4A High-Side Current Sensor with 25V Input CM Range and 0.9% Gain Error from-40°C to 85°C Using an Analog Temperature Compensation Technique
    Xu, Long
    Huijsing, Johan H.
    Makinwa, Kofi A. A.
    2018 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE - (ISSCC), 2018, : 324 - +