Triangular decomposition of right coideal subalgebras

被引:6
|
作者
Kharchenko, V. K. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, FES Cuautitlan, Ctr Invest Teor, Cuautitlan 54768, Edstado Mexico, Mexico
关键词
Hopf algebra; Coideal subalgebra; PBW-basis;
D O I
10.1016/j.jalgebra.2010.01.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a Kac-Moody algebra. We show that every homogeneous right coideal subalgebra U of the multiparameter version of the quantized universal enveloping algebra U-q(g), q(m) not equal 1 containing all group-like elements has a triangular decomposition U = U- circle times(k[F]) k[H] circle times(k[G]) U+, where U- and U+ are right coideal subalgebras of negative and positive quantum Borel subalgebras. However if U-1 and U-2 are arbitrary right coideal subalgebras of respectively positive and negative quantum Borel subalgebras, then the triangular composition U-2 circle times(k[F]) k[H] circle times(k[G]) U-1 is a right coideal but not necessary a subalgebra. Using a recent combinatorial classification of right coideal subalgebras of the quantum Borel algebra U-q(+)(so(2n+1)), we find a necessary condition for the triangular composition to be a right coideal subalgebra of U-q(so(2n+1)). If q has a finite multiplicative order t > 4, similar results remain valid for homogeneous right coideal subalgebras of the multiparameter version of the small Lusztig quantum groups u(q)(g). u(q)(so(2n+1)). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3048 / 3089
页数:42
相关论文
共 50 条