Recursion operators, higher-order symmetries and superintegrability in quantum mechanics

被引:5
|
作者
Sheftel, MB
Tempesta, P
Winternitz, P
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
[2] NW Polytech Inst, Dept Higher Math, St Petersburg 191186, Russia
[3] Univ Lecce, I-73100 Lecce, Italy
[4] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
[5] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[6] Univ Montreal, Dept Math Sci, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1023/A:1017553909398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A connection between the theory of superintegrable quantum-mechanical systems, which admit a maximal number of integrals of motion, and the standard Lie group theory is established. It is shown that the flows generated by first- and second-order Lie symmetries of the bidimensional Schrodinger equation can be classified and interpreted as quantum-mechanical operators which commute with integrable or superintegrable Hamiltonians. In this way! ail known superintegrable potentials in the plane are naturally obtained and slightly more general integrals of motion are found.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [1] Lie symmetries and superintegrability in quantum mechanics
    M. B. Sheftel
    P. Tempesta
    P. Winternitz
    [J]. Physics of Atomic Nuclei, 2002, 65 : 1144 - 1148
  • [2] Lie symmetries and superintegrability in quantum mechanics
    Sheftel, MB
    Tempesta, P
    Winternitz, P
    [J]. PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1144 - 1148
  • [3] Superintegrability and higher-order constants for classical and quantum systems
    E. G. Kalnins
    W. Miller
    G. S. Pogosyan
    [J]. Physics of Atomic Nuclei, 2011, 74 : 914 - 918
  • [4] Superintegrability and Higher-Order Constants for Classical and Quantum Systems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2011, 74 (06) : 914 - 918
  • [5] SYMMETRIES AND ALTERNATIVE LAGRANGIANS IN HIGHER-ORDER MECHANICS
    SARLET, W
    [J]. PHYSICS LETTERS A, 1985, 108 (01) : 14 - 18
  • [6] Higher-order supersymmetric quantum mechanics
    Fernández, DJ
    Fernández-García, N
    [J]. LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 236 - +
  • [7] Superintegrable deformations of superintegrable systems: Quadratic superintegrability and higher-order superintegrability
    Ranada, Manuel F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [8] HIGHER-ORDER PARASUPERSYMMETRIC QUANTUM-MECHANICS
    DURAND, S
    MAYRAND, M
    SPIRIDONOV, V
    VINET, L
    [J]. MODERN PHYSICS LETTERS A, 1991, 6 (34) : 3163 - 3169
  • [9] Higher-order superintegrability of a Holt related potential
    Campoamor-Stursberg, R.
    Carinena, J. F.
    Ranada, M. F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (43)
  • [10] Method of Higher-order Operators for Quantum Optomechanics
    Khorasani, Sina
    [J]. SCIENTIFIC REPORTS, 2018, 8