Surface modification of semiconductor photoanode for photoelectrochemical water splitting

被引:11
|
作者
Chawla, Priyanka [1 ]
Tripathi, Mridula [1 ]
机构
[1] Univ Allahabad, CMP Degree Coll, Dept Chem, Allahabad 211002, Uttar Pradesh, India
关键词
Photoelectrochemical solar cell; ns-TiO2; ns-TiO2-; CeO2; photoelectrode; Hydrogen production; CEO2;
D O I
10.1016/j.ijhydene.2015.11.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The motivation of the present work was to obtain improved TiO2 photoelectrode by admixing CeO2 through sol gel process. The surface morphology, structural and PEC characterization of the TiO2 overland with CeO2 admixtures have been investigated in relation to hydrogen production through semiconductor septum photo-electro-chemical (SC-SEP PEC) solar cell. UV Vis absorption spectra show a clear enhancement in the absorption range caused by admixing CeO2. The CeO2 admixed ns TiO2 exhibited a high photocurrent and photovoltage of 14.6 mA cm(-2) and 920 mV. The ns TiO2 CeO2 electrode showed high hydrogen gas evolution rate of 13.8 1 h(-1) m(-2) in comparison to bare ns- TiO2 photoelectrode which showed 8.6 1 h(-1) m(-2) hydrogen gas evolution rates. (C) 2015 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7987 / 7992
页数:6
相关论文
共 50 条
  • [1] Promotional effects of cetyltrimethylammonium bromide surface modification on a hematite photoanode for photoelectrochemical water splitting
    Li, Qian
    Antony, Rajini P.
    Wong, Lydia Helena
    Ng, Dickon H. L.
    [J]. RSC ADVANCES, 2015, 5 (121): : 100142 - 100146
  • [2] The AgCl photoanode for photoelectrochemical water splitting
    Schürch, D
    Currao, A
    [J]. CHIMIA, 2003, 57 (04) : 204 - 207
  • [3] Photoelectrochemical water splitting with AgCl as photoanode?
    Calzaferri, G
    Schürch, D
    Glaus, S
    Currao, A
    [J]. INTERNATIONAL SYMPOSIUM ON SILVER HALIDE IMAGING: SILVER HALIDE IN A NEW MILLENNIUM, 2000, : 127 - 127
  • [4] The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting
    Qi-Tao Liu
    De-Yu Liu
    Jian-Ming Li
    Yong-Bo Kuang
    [J]. Frontiers of Physics, 2019, 14
  • [5] The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting
    Liu, Qi-Tao
    Liu, De-Yu
    Li, Jian-Ming
    Kuang, Yong-Bo
    [J]. FRONTIERS OF PHYSICS, 2019, 14 (05)
  • [6] The silver chloride photoanode in photoelectrochemical water splitting
    Schürch, D
    Currao, A
    Sarkar, S
    Hodes, G
    Calzaferri, G
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (49): : 12764 - 12775
  • [7] Dual modification of BiVO4 photoanode for synergistically boosting photoelectrochemical water splitting
    Yin, Dan
    Ning, Xingming
    Zhang, Qi
    Du, Peiyao
    Lu, Xiaoquan
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 : 238 - 244
  • [8] Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting
    Li, Zhenzi
    Wu, Jiaxing
    Liao, Lijun
    He, Xiangyi
    Huang, Baoxia
    Zhang, Shiyu
    Wei, Yuxiu
    Wang, Shijie
    Zhou, Wei
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 626 (879-888) : 879 - 888
  • [9] Surface states regulation of sulfide-based photoanode for photoelectrochemical water splitting
    Wang, Haimei
    Xia, Yuguo
    Wen, Ning
    Shu, Zhan
    Jiao, Xiuling
    Chen, Dairong
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 300
  • [10] An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting
    Wang, Bao-Shun
    Li, Ren-Ying
    Zhang, Zhi-Yun
    Xing-Wang
    Wu, Xiao-Ling
    Cheng, Guo-An
    Zheng, Rui-Ting
    [J]. CATALYSIS TODAY, 2019, 321 : 100 - 106