Yttria-stabilized zirconia-based composites with adaptive thermal conductivity

被引:21
|
作者
Gengler, Jamie J. [1 ,2 ]
Muratore, Christopher [2 ]
Roy, Ajit K. [2 ]
Hu, Jianjun [2 ]
Voevodin, Andrey A. [2 ]
Roy, Sukesh [1 ,3 ]
Gord, James R. [3 ]
机构
[1] Spectral Energies LLC, Dayton, OH 45431 USA
[2] USAF, Res Lab, Mat & Mfg Directorate, Thermal Sci & Mat Branch, Wright Patterson AFB, OH 45433 USA
[3] USAF, Res Lab, Prop Directorate, Combust Branch, Wright Patterson AFB, OH 45433 USA
关键词
Nanocomposites; Porosity/voids; Thermal properties; CHAMELEON SURFACE ADAPTATION; NANOCOMPOSITE COATINGS; TRIBOLOGICAL COATINGS; GRAIN-SIZE; GOLD; WEAR; LUBRICATION; DEPOSITION; DIFFUSION; POROSITY;
D O I
10.1016/j.compscitech.2010.08.010
中图分类号
TB33 [复合材料];
学科分类号
摘要
Thermal conductivity trends in a "chameleon coating" thin film were characterized with a time-domain thermoreflectance (TDTR) technique. A yttria-stabilized zirconia (YSZ)-based nanocomposite material containing similar to 21 vol.% silver (Ag) was employed for this study. The thermal conductivity (k) of the asdeposited composite film was measured with TDTR and found to have a value of 7.4 +/- 1.4 W m(-1) K(-1). The film was then annealed at 500 degrees C for 1 h to stimulate Ag flow from within the composite to the surface via diffusion. The Ag that coalesced on the surface during annealing was removed to expose the underlying porous YSZ matrix, and the sample was reexamined with the TDTR technique. The thermal conductivity of the porous nanocomposite YSZ material was then measured to be 1.6 +/- 0.2 W m(-1) K(-1), which is significantly lower than a fully dense control sample of pure nanocrystalline YSZ (2.0 +/- 0.1 W m(-1) K(-1)). The annealed film displayed a 20% reduction in thermal conductivity as compared to the control sample and a 4-5-fold reduction in thermal conductivity as compared to the as-deposited material. The experiments demonstrate temperature triggering of a composite material, resulting in selfmodifying thermal conductivity and diffusion-controlled porosity. These aspects can be used to enhance or restrict thermal transport (i.e., a thermal switch). The applicability of the TDTR technique to measurements of thin, nanoporous film materials is also demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2117 / 2122
页数:6
相关论文
共 50 条
  • [1] Fabrication of Yttria-Stabilized Zirconia-Based Honeycomb Biofilters
    Gallastegui, Gorka
    Elias, Ana
    Carlos Ruiz-Morales, Juan
    [J]. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2011, 8 (06) : 1305 - 1311
  • [2] Morphology and thermal conductivity of yttria-stabilized zirconia coatings
    Zhao, Hengbei
    Yu, Fengling
    Bennett, Ted D.
    Wadley, Haydn N. G.
    [J]. ACTA MATERIALIA, 2006, 54 (19) : 5195 - 5207
  • [3] Assessment of the Thermal Conductivity of Yttria-Stabilized Zirconia Coating
    An, Kyong Jun
    [J]. MATERIALS TRANSACTIONS, 2014, 55 (01) : 188 - 193
  • [4] Thermal conductivity of dense and porous yttria-stabilized zirconia
    K. W. Schlichting
    N. P. Padture
    P. G. Klemens
    [J]. Journal of Materials Science, 2001, 36 : 3003 - 3010
  • [5] Thermal conductivity of dense and porous yttria-stabilized zirconia
    Schlichting, KW
    Padture, NP
    Klemens, PG
    [J]. JOURNAL OF MATERIALS SCIENCE, 2001, 36 (12) : 3003 - 3010
  • [6] Thermal conductivity of two compositions of yttria-stabilized zirconia
    Slifka, AJ
    Filla, BJ
    Stalick, JK
    [J]. THERMAL CONDUCTIVITY 25: THERMAL EXPANSION 13, 2000, 25 : 147 - 154
  • [7] NOx storage capacity of yttria-stabilized zirconia-based catalysts
    Hernandez, W. Y.
    Hadjar, A.
    Klotz, M.
    Leloup, J.
    Princivalle, A.
    Tardivat, C.
    Guizard, C.
    Vernoux, P.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 130 : 54 - 64
  • [8] Yttria-stabilized zirconia-based ceramic sensors for hydrothermal applications
    Manna, M. F.
    Ulmer, G. C.
    Grandstaff, D. E.
    [J]. WATER-ROCK INTERACTION, VOLS 1 AND 2, PROCEEDINGS, 2007, : 233 - 236
  • [9] Effect of ceria on the properties of yttria-stabilized zirconia-based electrolytic membranes
    Agarkov, D. A.
    Borik, M. A.
    Korableva, G. M.
    Kulebyakin, A. V.
    Komarov, B. E.
    Kuritsyna, I. E.
    Lomonova, E. E.
    Milovich, F. O.
    Myzina, V. A.
    Pankratov, V. A.
    Tabachkova, N. Y.
    Zakharov, D. M.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (06) : 1901 - 1908
  • [10] THERMAL EXPANSION OF YTTRIA-STABILIZED ZIRCONIA
    NIELSEN, TH
    LEIPOLD, MH
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1964, 47 (03) : 155 - 155