Proteomic Profiling of Microtubule Self-organization in M-phase

被引:4
|
作者
Rosas-Salvans, Miquel [1 ]
Cavazza, Tommaso [1 ,5 ]
Espadas, Guadalupe [3 ]
Sabido, Eduard [2 ,3 ]
Vernos, Isabelle [1 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, Ctr Genom Regulat, Cell & Dev Biol Programme, Dr Aiguader 88, Barcelona 08003, Spain
[2] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Prote Unit, Dr Aiguader 88, Barcelona 08003, Spain
[3] Univ Pompeu Fabra, Dr Aiguader 88, Barcelona 08003, Spain
[4] ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
[5] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
关键词
XENOPUS EGG EXTRACTS; PROTEIN-KINASE CK2; MITOTIC SPINDLE; AURORA-A; RAN; DYNAMICS; COORDINATION; QUINALIZARIN; NUCLEATION; INHIBITOR;
D O I
10.1074/mcp.RA118.000745
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microtubules (MTs) and associated proteins can self-organize into complex structures such as the bipolar spindle, a process in which RanGTP plays a major role. Addition of RanGTP to M-phase Xenopus egg extracts promotes the nucleation and self-organization of MTs into asters and bipolar-like structures in the absence of centrosomes or chromosomes. We show here that the complex proteome of these RanGTP-induced MT assemblies is similar to that of mitotic spindles. Using proteomic profiling we show that MT self-organization in the M-phase cytoplasm involves the non-linear and non-stoichiometric recruitment of proteins from specific functional groups. Our study provides for the first time a temporal understanding of the protein dynamics driving MT self-organization in M-phase.
引用
收藏
页码:1991 / 2004
页数:14
相关论文
共 50 条
  • [1] MICROTUBULE-SEVERING ACTIVITY IN M-PHASE
    SHIINA, N
    GOTOH, Y
    NISHIDA, E
    [J]. TRENDS IN CELL BIOLOGY, 1995, 5 (07) : 283 - 286
  • [2] Self-organization of the microtubule cytoskeleton in developing axons
    Craig, Erin M.
    Sprouse, Calvin
    Manry, Christopher
    Horne, Dominic
    Cruz, Roy, Jr.
    Eckel, Bridie
    Baas, Peter W.
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 262A - 262A
  • [3] Microtubule Self-Organization in the Presence of Crowding Agents
    do Rosario, Carline A. Fermino
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (03) : 504A - 504A
  • [4] Microtubule self-organization is gravity-dependent
    Papaseit, C
    Pochon, N
    Tabony, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) : 8364 - 8368
  • [5] Robustness of the microtubule network self-organization in epithelia
    Plochocka, Aleksandra Z.
    Moreno, Miguel Ramirez
    Davie, Alexander M.
    Bulgakova, Natalia A.
    Chumakova, Lyubov
    [J]. ELIFE, 2021, 10 : 1 - 25
  • [6] Influence of M-phase chromatin on the anisotropy of microtubule asters
    Dogterom, M
    Felix, MA
    Guet, CC
    Leibler, S
    [J]. JOURNAL OF CELL BIOLOGY, 1996, 133 (01): : 125 - 140
  • [7] Self-organization of interphase microtubule arrays in fission yeast
    Carazo-Salas, Rafael E.
    Nurse, Paul
    [J]. NATURE CELL BIOLOGY, 2006, 8 (10) : 1102 - U94
  • [8] Nonlocal Mechanism of Self-Organization and Centering of Microtubule Asters
    E. N. Cytrynbaum
    V. Rodionov
    A. Mogilner
    [J]. Bulletin of Mathematical Biology, 2006, 68 : 1053 - 1072
  • [9] Physical interpretation of microtubule self-organization in gravitational fields
    Tuszynski, J
    Sataric, MV
    Portet, S
    Dixon, JM
    [J]. PHYSICS LETTERS A, 2005, 340 (1-4) : 175 - 180
  • [10] Stochastic models for plant microtubule self-organization and structure
    Ezgi C. Eren
    Ram Dixit
    Natarajan Gautam
    [J]. Journal of Mathematical Biology, 2015, 71 : 1353 - 1385