A three-parameter non-linear lattice-Boltzmann model for ideal miscible fluids

被引:0
|
作者
Facin, PC [1 ]
Philippi, PC
dos Santos, LOE
机构
[1] State Univ Ponta Grossa, Dept Phys, BR-84030900 Ponta Grossa, PR, Brazil
[2] Univ Fed Santa Catarina, Dept Mech Engn, BR-88040900 Florianopolis, SC, Brazil
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Present work is concerned with the construction of a lattice-Boltzmann (LB) model for ideal miscible fluids. In this particular case, collision term in LB equation can be modelled by, only, considering mutual and cross collisions between, respectively, particles of the same and of different kind. A non-linear LB model with three distinct relaxation times intended to be used in problems with large concentration gradients is presented. Model enables the independent management of the fluid viscosities mu(r) and mu(b) and binary diffusivity D. It is shown that mass and momentum are, always, preserved and that the model retrieves consistent hydrodynamic equations in the incompressible limit. Theoretical values, obtained from Chapman-Enskog analysis, for binary diffusivity and mixture viscosity are compared with numerical values, directly obtained from LB simulations.
引用
收藏
页码:1007 / 1014
页数:8
相关论文
共 50 条
  • [1] A non-linear lattice-Boltzmann model for ideal miscible fluids
    Facin, PC
    Philippi, PC
    dos Santos, LOE
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (06): : 945 - 949
  • [2] LATTICE-GAS AND LATTICE-BOLTZMANN MODELS OF MISCIBLE FLUIDS
    HOLME, R
    ROTHMAN, DH
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (3-4) : 409 - 429
  • [3] A Lattice Boltzmann model for the numerical simulation of non-linear viscoelastic fluids
    Giraud, L
    [J]. PROGRESS AND TRENDS IN RHEOLOGY V, 1998, : 349 - 350
  • [4] New lattice-Boltzmann model for magnetic fluids
    Hirabayashi, M
    Chen, Y
    Ohashi, H
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (17)
  • [5] Lattice-Boltzmann model for interacting amphiphilic fluids
    Nekovee, M
    Coveney, PV
    Chen, HD
    Boghosian, BM
    [J]. PHYSICAL REVIEW E, 2000, 62 (06): : 8282 - 8294
  • [6] Fluctuating lattice-Boltzmann model for complex fluids
    Ollila, Santtu T. T.
    Denniston, Colin
    Karttunen, Mikko
    Ala-Nissila, Tapio
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (06):
  • [7] Three-dimensional lattice-Boltzmann model of van der Waals fluids
    Kalarakis, AN
    Burganos, VN
    Payatakes, AC
    [J]. PHYSICAL REVIEW E, 2003, 67 (01): : 167021 - 167028
  • [8] A Reliable Lattice-Boltzmann Solver for Electrodynamics: New Applications in Non-linear Media
    Mendoza, M.
    Munoz, J. D.
    [J]. PIERS 2011 MARRAKESH: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, : 1632 - 1636
  • [9] A unified lattice Boltzmann model for immiscible and miscible ternary fluids
    He, Qiang
    Li, Yongjian
    Huang, Weifeng
    Hu, Yang
    Li, Decai
    Wang, Yuming
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 2830 - 2859
  • [10] Lattice-Boltzmann model based on field mediators for immiscible fluids
    Santos, LOE
    Facin, PC
    Philippi, PC
    [J]. PHYSICAL REVIEW E, 2003, 68 (05):