A roadmap towards a space-based radio telescope for ultra-low frequency radio astronomy

被引:31
|
作者
Bentum, M. J. [1 ,4 ]
Verma, M. K. [2 ]
Rajan, R. T. [2 ]
Boonstra, A. J. [4 ]
Verhoeven, C. J. M. [2 ]
Gill, E. K. A. [3 ]
van der Veen, A. J. [2 ]
Falcke, H. [4 ,5 ]
Wolt, M. Klein [5 ]
Monna, B. [7 ]
Engelen, S. [7 ]
Rotteveel, J. [8 ]
Gurvits, L. I. [3 ,6 ]
机构
[1] Eindhoven Univ Technol, Fac Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] Delft Univ Technol, Fac EEMCS, Mekelweg 4, NL-2628 CD Delft, Netherlands
[3] Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 HS Delft, Netherlands
[4] Netherlands Inst Radio Astron, ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[5] Radboud Univ Nijmegen, POB 9010, NL-6500 GL Nijmegen, Netherlands
[6] Joint Inst VLBI ERIC, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[7] Hyper Technol, Vlinderweg 2, NL-2623 AX Delft, Netherlands
[8] Innovat Solut Space, Motorenweg 23, NL-2623 CR Delft, Netherlands
关键词
OLFAR; Nanosatellite; Satellite swarms; Ultra-long wavelength astronomy; Ultra-low frequency radio astronomy; RADIATION; NETWORK; VLBI;
D O I
10.1016/j.asr.2019.09.007
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The past two decades have witnessed a renewed interest in low frequency radio astronomy, with a particular focus on frequencies above 30 MHz e.g., LOFAR (LOw Frequency ARray) in the Netherlands and its European extension ILT, the International LOFAR Telescope. However, at frequencies below 30 MHz, Earth-based observations are limited due to a combination of severe ionospheric distortions, almost full reflection of radio waves below 10 MHz, solar eruptions and the radio frequency interference (RFI) of human-made signals. Moreover, there are interesting scientific processes which naturally occur at these low frequencies. A space or Lunar-based ultralow-frequency (also referred to as ultra-long-wavelength, ULW) radio array would suffer significantly less from these limitations and hence would open up the last, virtually unexplored frequency domain in the electromagnetic spectrum. A roadmap has been initiated by astronomers and researchers in the Netherlands to explore the opportunity of building a swarm of satellites to observe at the frequency band below 30 MHz. This roadmap dubbed Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR), a space-based ultra-low frequency radio telescope that will explore the Universe's so-called dark ages, map the interstellar medium, and study planetary and solar bursts in the solar system and search them in other planetary systems. Such a radio astronomy system will comprise of a swarm of hundreds to thousands of satellites, working together as a single aperture synthesis instrument deployed sufficiently far away from Earth to avoid terrestrial RFI. The OLFAR telescope is a novel and complex system, requiring yet to be proven engineering solutions. Therefore, a number of key technologies are still required to be developed and proven. The first step in this roadmap is the NCLE (Netherlands China Low Frequency Explorer) experiment, which was launched in May 2018 on the Chinese Chang'e 4 mission. The NCLE payload consists of a three monopole antenna system for low frequency observations, from which the first data stream is expected in the second half of 2019, which will provide important feedback for future science and technology opportunities. In this paper, the roadmap towards OLFAR: a brief overview of the science opportunities, and the technological and programmatic challenges of the mission are presented. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:856 / 867
页数:12
相关论文
共 50 条
  • [1] The radio environment for a space-based low-frequency radio astronomy instrument
    Bentum, Mark J.
    Boonstra, Albert Jan
    Horlings, Wouter
    van Vugt, Pieter
    [J]. 2019 IEEE AEROSPACE CONFERENCE, 2019,
  • [2] Review of Space-Based Antenna Technology for Low Frequency Radio Astronomy
    Liu, Jia
    Wan, Jixiang
    Li, Zhengjun
    Wang, Hao
    Zhang, Qiaoshan
    [J]. 2022 IEEE 10TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION, APCAP, 2022,
  • [3] THE RFI SITUATION FOR A SPACE-BASED LOW-FREQUENCY RADIO ASTRONOMY INSTRUMENT
    Bentum, Mark
    Boonstra, Albert-Jan
    [J]. 2016 RADIO FREQUENCY INTERFERENCE (RFI), 2016, : 1 - 6
  • [4] Protecting space-based radio astronomy
    Altunin, V
    [J]. PRESERVING THE ASTRONOMICAL SKY, 2001, (196): : 324 - 334
  • [5] Directions for space-based low frequency radio astronomy .1. System considerations
    Basart, JP
    Burns, JO
    Dennison, BK
    Weiler, KW
    Kassim, NE
    Castillo, SP
    McCune, BM
    [J]. RADIO SCIENCE, 1997, 32 (01) : 251 - 263
  • [6] Directions for space-based low-frequency radio astronomy .2. Telescopes
    Basart, JP
    Burns, JO
    Dennison, BK
    Weiler, KW
    Kassim, NE
    Castillo, SP
    McCune, BM
    [J]. RADIO SCIENCE, 1997, 32 (01) : 265 - 275
  • [7] Space-based aperture array for ultra-long wavelength radio astronomy
    Raj Thilak Rajan
    Albert-Jan Boonstra
    Mark Bentum
    Marc Klein-Wolt
    Frederik Belien
    Michel Arts
    Noah Saks
    Alle-Jan van der Veen
    [J]. Experimental Astronomy, 2016, 41 : 271 - 306
  • [8] Space-based aperture array for ultra-long wavelength radio astronomy
    Rajan, Raj Thilak
    Boonstra, Albert-Jan
    Bentum, Mark
    Klein-Wolt, Marc
    Belien, Frederik
    Arts, Michel
    Saks, Noah
    van der Veen, Alle-Jan
    [J]. EXPERIMENTAL ASTRONOMY, 2016, 41 (1-2) : 271 - 306
  • [9] A space-based decametric wavelength radio telescope concept
    Belov, K.
    Branch, A.
    Broschart, S.
    Castillo-Rogez, J.
    Chien, S.
    Clare, L.
    Dengler, R.
    Gao, J.
    Garza, D.
    Hegedus, A.
    Hernandez, S.
    Herzig, S.
    Imken, T.
    Kim, H.
    Mandutianu, S.
    Romero-Wolf, A.
    Schaffer, S.
    Troesch, M.
    Wyatt, E. J.
    Lazio, J.
    [J]. EXPERIMENTAL ASTRONOMY, 2018, 46 (02) : 241 - 284
  • [10] A space-based decametric wavelength radio telescope concept
    K. Belov
    A. Branch
    S. Broschart
    J. Castillo-Rogez
    S. Chien
    L. Clare
    R. Dengler
    J. Gao
    D. Garza
    A. Hegedus
    S. Hernandez
    S. Herzig
    T. Imken
    H. Kim
    S. Mandutianu
    A. Romero-Wolf
    S. Schaffer
    M. Troesch
    E. J. Wyatt
    J. Lazio
    [J]. Experimental Astronomy, 2018, 46 : 241 - 284