A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation

被引:13
|
作者
Cho, Min Hyung [1 ]
Cai, Wei [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
Wideband Fast Multipole Method; Helmholtz equation; Fast solver; ELECTROMAGNETIC SCATTERING; ALGORITHM;
D O I
10.1016/j.cpc.2010.09.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Wideband Fast Multipole Method (FMM) for the 2D Helmholtz equation is presented. It can evaluate the interactions between N particles governed by the fundamental solution of 2D complex Helmholtz equation in a fast manner for a wide range of complex wave number k, which was not easy with the original FMM due to the instability of the diagonalized conversion operator. This paper includes the description of theoretical backgrounds, the FMM algorithm, software structures, and some test runs.
引用
收藏
页码:2086 / 2090
页数:5
相关论文
共 50 条
  • [1] Revision of wFMM - A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation
    Cho, Min Hyung
    Cai, Wei
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (02) : 446 - 447
  • [2] Solution of two-dimensional Helmholtz equation by multipole theory method
    Zheng, Q
    Xie, F
    Lin, W
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1999, 13 (02) : 205 - 220
  • [3] A wideband fast multipole method for the Helmholtz equation in three dimensions
    Cheng, Hongwei
    Crutchfield, William Y.
    Gimbutas, Zydrunas
    Greengard, Leslie F.
    Ethridge, J. Frank
    Huang, Jingfang
    Rokhlin, Vladimir
    Yarvin, Norman
    Zhao, Junsheng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 216 (01) : 300 - 325
  • [4] A fast multipole boundary integral equation method for two-dimensional diffusion problems
    Yang, Ming
    Song, Jiming
    Chen, Zhigang
    Nakagawa, Norio
    [J]. Review of Progress in Quantitative Nondestructive Evaluation, Vols 26A and 26B, 2007, 894 : 294 - 301
  • [5] A wideband fast multipole algorithm for two-dimensional volume integral equations
    Nakashima, N.
    Tateiba, M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (02) : 195 - 213
  • [6] A wideband Fast Multipole Method for the Helmholtz kernel: Theoretical developments
    Chaillat, Stephanie
    Collino, Francis
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 660 - 678
  • [7] A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation
    Gumerov, Nail A.
    Duraiswami, Ramani
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 125 (01): : 191 - 205
  • [8] Solution of two-dimensional Laplace equation by multipole theory method
    Zheng, Q
    Hou, D
    Xie, F
    Lin, W
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1999, 13 (08) : 1061 - 1076
  • [9] FOURIER-BASED FAST MULTIPOLE METHOD FOR THE HELMHOLTZ EQUATION
    Cecka, Cris
    Darve, Eric
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A79 - A103
  • [10] On optimal convergence rates of a two-dimensional fast multipole method
    Xiang, Shuhuang
    Liu, Guidong
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 76 : 74 - 80