Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales

被引:16
|
作者
Zu, Qi-hang [1 ]
Zhu, Jian-qing [1 ]
机构
[1] Suzhou Univ Sci & Technol, Coll Math & Phys, Suzhou 215009, Peoples R China
关键词
HOJMAN CONSERVED QUANTITY; CALCULUS; SYMMETRIES;
D O I
10.1063/1.4960471
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper focuses on studying the Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales. First, the Hamilton equations of nonholonomic nonconservative systems on time scales are established, which is based on the Lagrange equations for nonholonomic systems on time scales. Then, based upon the quasi-invariance of Hamilton action of systems under the infinitesimal transformations with respect to the time and generalized coordinate on time scale, the Noether identity and the conserved quantity of nonholonomic nonconservative systems on time scales are obtained. Finally, an example is presented to illustrate the application of the results. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条