Deep learning enables cross-modality super-resolution in fluorescence microscopy

被引:545
|
作者
Wang, Hongda [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Jin, Yiyin [1 ]
Wei, Zhensong [1 ]
Gao, Ronald [4 ]
Gunaydin, Harun [1 ]
Bentolila, Laurent A. [3 ,5 ]
Kural, Comert [6 ,7 ]
Ozcan, Aydogan [1 ,2 ,3 ,8 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
[6] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[7] Ohio State Univ, Biophys Grad Program, Columbus, OH 43210 USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 欧盟地平线“2020”; 美国国家卫生研究院;
关键词
OPTICAL RECONSTRUCTION MICROSCOPY; DEPTH-OF-FIELD; STIMULATED-EMISSION; EXTENDED DEPTH; RESOLUTION LIMIT; LIVE CELLS; DEPLETION; NANOSCOPY; DECONVOLUTION; SOFTWARE;
D O I
10.1038/s41592-018-0239-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved ones. Using this framework, we improve the resolution of wide-field images acquired with low-numerical-aperture objectives, matching the resolution that is acquired using high-numerical-aperture objectives. We also demonstrate cross-modality super-resolution, transforming confocal microscopy images to match the resolution acquired with a stimulated emission depletion (STED) microscope. We further demonstrate that total internal reflection fluorescence (TIRF) microscopy images of subcellular structures within cells and tissues can be transformed to match the results obtained with a TIRF-based structured illumination microscope. The deep network rapidly outputs these super-resolved images, without any iterations or parameter search, and could serve to democratize super-resolution imaging.
引用
收藏
页码:103 / +
页数:11
相关论文
共 50 条
  • [1] Deep learning enables cross-modality super-resolution in fluorescence microscopy
    Hongda Wang
    Yair Rivenson
    Yiyin Jin
    Zhensong Wei
    Ronald Gao
    Harun Günaydın
    Laurent A. Bentolila
    Comert Kural
    Aydogan Ozcan
    [J]. Nature Methods, 2019, 16 : 103 - 110
  • [2] Cross-Modality Deep Learning Achieves Super-Resolution in Fluorescence Microscopy
    Wang, Hongda
    Rivenson, Yair
    Jin, Yiyin
    Wei, Zhensong
    Gao, Ronald
    Gunaydin, Harun
    Bentolila, Laurent A.
    Kural, Comert
    Ozcan, Aydogan
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [3] Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
    Park, Hyoungjun
    Na, Myeongsu
    Kim, Bumju
    Park, Soohyun
    Kim, Ki Hean
    Chang, Sunghoe
    Ye, Jong Chul
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
    Hyoungjun Park
    Myeongsu Na
    Bumju Kim
    Soohyun Park
    Ki Hean Kim
    Sunghoe Chang
    Jong Chul Ye
    [J]. Nature Communications, 13
  • [5] CROSS-MODALITY SUPER-RESOLUTION OF SATELLITE GRAVITY DATA FOR GEOPHYSICAL EXPLORATION
    Alaofin, Oluwafemi
    Zhang, Yi
    Sharma, Jyotsna
    Li, Xin
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7539 - 7542
  • [6] Deep-learning-based methods for super-resolution fluorescence microscopy
    Liao, Jianhui
    Qu, Junle
    Hao, Yongqi
    Li, Jia
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2023, 16 (03)
  • [7] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    [J]. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [8] Cross-Modality High-Frequency Transformer for MR Image Super-Resolution
    Fang, Chaowei
    Zhang, Dingwen
    Wang, Liang
    Zhang, Yulun
    Cheng, Lechao
    Han, Junwei
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1584 - 1592
  • [9] Single Pair Cross-Modality Super Resolution
    Shacht, Guy
    Danon, Dov
    Fogel, Sharon
    Cohen-Or, Daniel
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6374 - 6383
  • [10] Super-Resolution Fluorescence Microscopy
    Huang, Bo
    Bates, Mark
    Zhuang, Xiaowei
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2009, 78 : 993 - 1016