Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion

被引:61
|
作者
Le Breton, A [1 ]
机构
[1] Univ Grenoble 1, LMCIIMAG, F-38041 Grenoble, France
关键词
fractional Brownian motion; optimal filter; best linear unbiased estimator; maximum likelihood estimator;
D O I
10.1016/S0167-7152(98)00029-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The optimal filter is derived in a Gaussian linear system where the signal is a fixed random variable and the observation is driven by a fractional Brownian motion. An application to a related parameter estimation problem is discussed and a Girsanov-type formula is investigated. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
  • [1] OPTIMAL FILTERING OF LINEAR SYSTEM DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Misiran, Masnita
    Wu, Changzi
    Lu, Zudi
    Teo, K. L.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2010, 19 (3-4): : 495 - 513
  • [2] Filtering for linear systems driven by fractional Brownian motion
    Ahmed, NU
    Charalambous, CD
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (01) : 313 - 330
  • [3] Filtering for linear systems driven by fractional Brownian motion
    Ahmed, NU
    Charalambous, CD
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4259 - 4263
  • [4] Sampling and parameter estimation for a second order linear system with a fractional Brownian motion
    Duncan, T. E.
    Pasik-Duncan, B.
    [J]. 2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 3135 - 3139
  • [5] Linear filtering with fractional Brownian motion
    Kleptsyna, ML
    Kloeden, PE
    Anh, VV
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (05) : 907 - 914
  • [6] Fractional Brownian motion and parameter estimation
    Janak, Josef
    [J]. 34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 359 - 364
  • [7] Parameter estimation in stochastic differential equation driven by fractional Brownian motion
    Filatova, Daria
    Grzywaczewski, Marek
    Shybanova, Elizaveta
    Zili, Mounir
    [J]. EUROCON 2007: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOLS 1-6, 2007, : 2111 - 2117
  • [8] Parameter identification for a scalar linear system with fractional Brownian motion
    Duncan, TE
    Pasik-Duncan, B
    [J]. ADAPTATION AND LEARNING IN CONTROL AND SIGNAL PROCESSING 2001, 2002, : 383 - 387
  • [9] A filtering problem for a linear stochastic evolution equation driven by a fractional Brownian motion
    Grecksch, Wilfried
    Tudor, Constantin
    [J]. STOCHASTICS AND DYNAMICS, 2008, 8 (03) : 397 - 412
  • [10] Parameter Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion
    Song, Na
    Liu, Zaiming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,