Global Dirichlet Heat Kernel Estimates for Symmetric Levy Processes in Half-Space

被引:10
|
作者
Chen, Zhen-Qing [1 ]
Kim, Panki [2 ,3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Seoul Natl Univ, Dept Math Sci, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Dirichlet heat kernel; Transition density; Survival probability; Exit time; Levy system; Levy process; Symmetric Levy process; RELATIVISTIC STABLE PROCESSES; METRIC MEASURE-SPACES; JUMP-PROCESSES; OPEN SETS; FRACTIONAL LAPLACIAN;
D O I
10.1007/s10440-016-0061-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels of a large class of symmetric (but not necessarily rotationally symmetric) Levy processes on half spaces for all . These L,vy processes may or may not have Gaussian component. When Levy density is comparable to a decreasing function with damping exponent, our estimate is explicit in terms of the distance to the boundary, the Levy exponent and the damping exponent of Levy density.
引用
收藏
页码:113 / 143
页数:31
相关论文
共 50 条
  • [1] Global Dirichlet Heat Kernel Estimates for Symmetric Lévy Processes in Half-Space
    Zhen-Qing Chen
    Panki Kim
    [J]. Acta Applicandae Mathematicae, 2016, 146 : 113 - 143
  • [2] Dirichlet heat kernel estimates for rotationally symmetric Levy processes
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 90 - 120
  • [3] Estimates of Dirichlet heat kernel for symmetric Markov processes
    Grzywny, Tomasz
    Kim, Kyung-Youn
    Kim, Panki
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (0I) : 431 - 470
  • [4] GLOBAL HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (09) : 5021 - 5055
  • [5] Dirichlet heat kernel for unimodal Levy processes
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Ryznar, Michal
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (11) : 3612 - 3650
  • [6] Schauder estimates for a homogeneous Dirichlet problem in a half-space of a Hilbert space
    Priola, E
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (05) : 679 - 702
  • [7] Global Heat Kernel Estimates for Relativistic Stable Processes in Half-space-like Open Sets
    Zhen-Qing Chen
    Panki Kim
    Renming Song
    [J]. Potential Analysis, 2012, 36 : 235 - 261
  • [8] Global Heat Kernel Estimates for Relativistic Stable Processes in Half-space-like Open Sets
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    [J]. POTENTIAL ANALYSIS, 2012, 36 (02) : 235 - 261
  • [9] Symmetric jump processes and their heat kernel estimates
    CHEN Zhen-Qing1
    [J]. Science China Mathematics, 2009, (07) : 1423 - 1445
  • [10] Symmetric jump processes and their heat kernel estimates
    CHEN ZhenQing Department of MathematicsUniversity of WashingtonSeattleWA USA Department of MathematicsBeijing Institute of TechnologyBeijing China
    [J]. ScienceinChina(SeriesA:Mathematics)., 2009, 52 (07) - 1445