In this study, convective heat transfer around and through a porous circular cylinder together with internal heat generation has been investigated numerically. Governing equations containing continuity, momentum, and energy equations have been developed in polar coordinate system in both porous and nonporous media based on single-domain approach. However, governing equations in porous medium are derived using intrinsic volume averaging method. The equations are solved numerically based on finite volume method over staggered grid arrangement. Also, pressure correction-based iterative algorithm, SIMPLE, is applied for solving the pressure linked equations. Reynolds and Peclet numbers (based on cylinder diameter and velocity of free stream) are from 1 to 40. Also, Darcy number (Da) varies within the range of 10(-6) <= Da <= 10(-2) and porosity is considered 0.9 for all calculations. The influence of Da and Re numbers on local and average Nu numbers has been investigated. It is found that the local and average Nu numbers increase with any increase in Da number. Two correlations of average Nu number are presented for high and low Da numbers. [DOI: 10.1115/1.4005741]