An effective Simulated Annealing-based Mathematical Optimization Algorithm for Minimizing the Lennard-Jones Potential

被引:1
|
作者
Li, Guocheng [1 ]
机构
[1] Linyi Univ, Feixian Sch, Feixian, Shandong, Peoples R China
关键词
Optimal Lennard-Jones potential; Mathematical Optimization Algorithm; Annealing-based algorithm; GLOBAL OPTIMIZATION; CONTINUOUS-VARIABLES; CLUSTERS;
D O I
10.4028/www.scientific.net/KEM.474-476.2213
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Lennard-Jones (LJ) Potential Energy Problem is to construct the most stable form of N atoms of a molecule with the minimal LJ potential energy. This problem has a simple mathematical form Minimize f(x) =4 Sigma(i=1) Sigma(j=1,j<i) (1/tau(6)(ij) - 1/tau(3)(ij)) subject to x is an element of R-n. Where tau(ij) = (x(3i-2) - x(3j-2))(2) + (x(3i-1) - x(3j-1))(2) + (x(3i) - x(3j))(2), (x(3i-2), x(3i-1), x(3i)) is the coordinates ofatom, N >= 2. This paper is to minimize the L-J potential f(x) on R-n,where n = 3N. however it is a challenging and diffcult problem for many optimization methods when N is larger. This paper presents an effective mathematical optimization algorithm for minimizing the LJ Potential and a series of elegant optimal solutions of atoms up to 310 were got.
引用
收藏
页码:2213 / 2216
页数:4
相关论文
共 50 条
  • [1] An Effective Genetic-based Mathematical Computation Alalgorithm For Minimizing The Lennard-Jones Potential
    Li, Guocheng
    [J]. ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2221 - 2224
  • [2] Simulated annealing and the topology of the potential energy surface of Lennard-Jones clusters
    Wille, LT
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2000, 17 (2-4) : 551 - 554
  • [3] An infeasible point method for minimizing the Lennard-Jones potential
    Gockenbach, MS
    Kearsley, AJ
    Symes, WW
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1997, 8 (03) : 273 - 286
  • [4] Trilateration-Based Multilevel Method for Minimizing the Lennard-Jones Potential
    George, Jithin
    Di, Zichao
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT V, 2020, 12141 : 163 - 175
  • [5] An Infeasible Point Method for Minimizing the Lennard-Jones Potential
    Mark S. Gockenbach
    Anthony J. Kearsley
    William W. Symes
    [J]. Computational Optimization and Applications, 1997, 8 : 273 - 286
  • [6] A simulated annealing-based multiobjective optimization algorithm: AMOSA
    Bandyopadhyay, Sanghamitra
    Saha, Sriparna
    Maulik, Ujjwal
    Deb, Kalyanmoy
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (03) : 269 - 283
  • [7] Global optimization of Lennard-Jones clusters by a parallel fast annealing evolutionary algorithm
    Cai, WS
    Jiang, HY
    Shao, XG
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (05): : 1099 - 1103
  • [8] A simulated annealing-based optimization algorithm for process planning
    Ma, GH
    Zhang, YF
    Nee, AYC
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2000, 38 (12) : 2671 - 2687
  • [9] Simulated Annealing-Based Krill Herd Algorithm for Global Optimization
    Wang, Gai-Ge
    Guo, Lihong
    Gandomi, Amir Hossein
    Alavi, Amir Hossein
    Duan, Hong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] A Simulated Annealing-Based Multiobjective Optimization Algorithm for Political Districting
    Lara, A.
    Gutierrez, M. A.
    Rincon, E. A.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (06) : 1723 - 1731