Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution

被引:13
|
作者
Galarza, Christian E. [1 ]
Matos, Larissa A. [2 ]
Castro, Luis M. [3 ,4 ,5 ]
Lachos, Victor H. [6 ]
机构
[1] ESPOL, Fac Ciencias Nat & Matemat, Escuela Super Politecn Litoral, Via Perimetral Km 30-5, Guayaquil, Ecuador
[2] Univ Estadual Campinas, Dept Estat, Campinas, Brazil
[3] Pontificia Univ Catolica Chile, Dept Stat, Casilla 306,Correo 22, Santiago, Chile
[4] Millennium Nucleus Ctr Discovery Struct Complex D, ANID Millennium Sci Initiat Program, Santiago, Chile
[5] Pontificia Univ Catolica Chile, Ctr Riesgos & Seguros UC, Santiago, Chile
[6] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
基金
巴西圣保罗研究基金会;
关键词
Elliptical distributions; Selection distributions; Truncated distributions; Truncated moments; MIXTURES;
D O I
10.1016/j.jmva.2021.104944
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we compute doubly truncated moments for the selection elliptical class of distributions, including some multivariate asymmetric versions of well-known elliptical distributions, such as the normal, Student's t, slash, among others. We address the moments for doubly truncated members of this family, establishing neat formulation for high-order moments and its first two moments. We establish sufficient and necessary conditions for the existence of these truncated moments. Further, we propose optimized methods to handle the extreme setting of the parameters, partitions with almost zero volume or no truncation, which are validated with numerical studies. All results have been particularized to the unified skew-t distribution, a complex multivariate asymmetric heavy-tailed distribution which includes the extended skew-t, extended skew-normal, skew-t, and skew-normal distributions as particular and limiting cases. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Multivariate doubly truncated moments for generalized skew-elliptical distributions with applications
    Zuo, Baishuai
    Wang, Shaoxin
    Yin, Chuancun
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 444 - 476
  • [2] Some Statistical Aspects of the Truncated Multivariate Skew-t Distribution
    Alejandro Moran-Vasquez, Raul
    Zarrazola, Edwin
    Nagar, Daya K.
    [J]. MATHEMATICS, 2022, 10 (15)
  • [3] On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions
    Galarza Morales, Christian E.
    Matos, Larissa A.
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 455 - 465
  • [4] Multivariate Doubly Truncated Moments for a Class of Multivariate Location-Scale Mixture of Elliptical Distributions
    Xiangyu Han
    Chuancun Yin
    [J]. Mathematical Methods of Statistics, 2023, 32 : 155 - 175
  • [5] Multivariate Doubly Truncated Moments for a Class of Multivariate Location-Scale Mixture of Elliptical Distributions
    Han, Xiangyu
    Yin, Chuancun
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2023, 32 (03) : 155 - 175
  • [6] Efficient recursive computational algorithms for multivariate t and multivariate unified skew-t distributions with applications to inference
    Amiri, Mehdi
    Mehrali, Yaser
    Balakrishnan, Narayanaswamy
    Jamalizadeh, Ahad
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (01) : 125 - 158
  • [7] Efficient recursive computational algorithms for multivariate t and multivariate unified skew-t distributions with applications to inference
    Mehdi Amiri
    Yaser Mehrali
    Narayanaswamy Balakrishnan
    Ahad Jamalizadeh
    [J]. Computational Statistics, 2022, 37 : 125 - 158
  • [8] Characterization Test for Multivariate Skew-t Distributions
    Su, Yan
    Yuan, Jingjie
    [J]. 2021 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, ICAIP 2021, 2021, : 35 - 40
  • [9] Multivariate unified skew-elliptical distributions.
    Arellano-Valle, Reinaldo B.
    Genton, Marc G.
    [J]. CHILEAN JOURNAL OF STATISTICS, 2010, 1 (01): : 17 - 33
  • [10] Multivariate extended skew-t distributions and related families
    Arellano-Valle R.B.
    Genton M.G.
    [J]. METRON, 2010, 68 (3) : 201 - 234