Robust extended Kalman filter estimation with moving window through a quadratic programming formulation

被引:4
|
作者
Apio, Andressa [1 ]
Trierweiler, Jorge O. [1 ]
Farenzena, Marcelo [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Chem Engn Dept, Grp Intensificat Modeling Simulat Control & Optim, BR-90040040 Porto Alegre, RS, Brazil
关键词
State estimation; Parameter estimation; Kalman filters; Receding horizon estimation; Moving horizon estimation; PARAMETER-ESTIMATION; SIMULTANEOUS STATE; HORIZON; SYSTEMS;
D O I
10.1016/j.compchemeng.2021.107372
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, two new formulations for the extended (MW-EKF) and robust extended Kalman filter with moving window estimation (MW-REKF) are proposed. The MW-EKF and MW-REKF are formulated using an elegant quadratic programming problem that facilitates its implementation and decreases its computational cost. Besides that, the constrained extended Kalman filter (CEKF), constrained extended Kalman filter and smoother (CEKFS) and the moving horizon estimation (MHE) are compared in terms of computational cost and fit to the real data. The comparison is performed over a spherical-quadruple-tank model with different settings aiming to raise each approach's advantages and disadvantages. For both state and parameter estimation the MW-REKF has shown the smoothest and most robust behavior among all methodologies. This technique minimized the effect of the outliers, physical limitations, structural discrepancies, among others. The computational cost of the proposed techniques is only four times higher than CEKF and nine times smaller than the MHE. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Development of robust extended Kalman filter and moving window estimator for simultaneous state and parameter/disturbance estimation
    Valluru, Jayaram
    Patwardhan, Sachin C.
    Biegler, Lorenz T.
    [J]. JOURNAL OF PROCESS CONTROL, 2018, 69 : 158 - 178
  • [2] Robust MPC Tuning By Quadratic Weights Online Estimation of the Cost Function Through Extended Kalman Filter
    Gonzales, Oscar
    Rosales, Andres
    [J]. PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER SCIENCE (INCISCOS 2018), 2018, : 49 - 54
  • [3] Extended robust Kalman filter for attitude estimation
    Inoue, Roberto Santos
    Terra, Marco Henrique
    Cerri, Joao Paulo
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (02): : 162 - 172
  • [4] The quadratic extended Kalman filter
    Villares, J
    Vázquez, G
    [J]. 2004 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2004, : 480 - 484
  • [5] A robust β- extended Kalman filter for state of charge estimation
    Ni, Yunxia
    [J]. IONICS, 2024, 30 (01) : 335 - 341
  • [6] Robust extended Kalman filter with input estimation for maneuver tracking
    Yuzi JIANG
    Hexi BAOYIN
    [J]. Chinese Journal of Aeronautics, 2018, (09) : 1910 - 1919
  • [7] Robust extended Kalman filter with input estimation for maneuver tracking
    Yuzi JIANG
    Hexi BAOYIN
    [J]. Chinese Journal of Aeronautics., 2018, 31 (09) - 1919
  • [8] Robust extended Kalman filter with input estimation for maneuver tracking
    Jiang, Yuzi
    Baoyin, Hexi
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2018, 31 (09) : 1910 - 1919
  • [9] A robust formulation of the ensemble Kalman filter
    Thomas, S. J.
    Hacker, J. P.
    Anderson, J. L.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (639) : 507 - 521
  • [10] Robust Extended Kalman Filter Based Nonlinear Model Predictive Control Formulation
    Huang, Rui
    Patwardhan, Sachin C.
    Biegler, Lorenz T.
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 8046 - 8051