Support vector machines for wind speed prediction

被引:600
|
作者
Mohandes, MA [1 ]
Halawani, TO [1 ]
Rehman, S [1 ]
Hussain, AA [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Elect Engn, Engn Res Ctr, Dhahran 31261, Saudi Arabia
关键词
wind speed prediction; neural networks; multilayer perceptron; support vector machines;
D O I
10.1016/j.renene.2003.11.009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper introduces support vector machines (SVM), the latest neural network algorithm, to wind speed prediction and compares their performance with the multilayer perceptron (MLP) neural networks. Mean daily wind speed data from Madina city, Saudi Arabia, is used for building and testing both models. Results indicate that SVM compare favorably with the MLP model based on the root mean square errors between the actual and the predicted data. These results are confirmed for a system with order 1 to system with order 11. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:939 / 947
页数:9
相关论文
共 50 条
  • [1] Wind speed prediction using reduced support vector machines with feature selection
    Kong, Xiaobing
    Liu, Xiangjie
    Shi, Ruifeng
    Lee, Kwang Y.
    [J]. NEUROCOMPUTING, 2015, 169 : 449 - 456
  • [2] Short-term wind speed prediction in wind farms based on banks of support vector machines
    Ortiz-Garcia, Emilio G.
    Salcedo-Sanz, Sancho
    Perez-Bellido, Angel M.
    Gascon-Moreno, Jorge
    Portilla-Figueras, Jose A.
    Prieto, Luis
    [J]. WIND ENERGY, 2011, 14 (02) : 193 - 207
  • [3] Wind Speed Prediction Using Support Vector Regression
    Zhao, Pan
    Xia, Junrong
    Dai, Yiping
    He, Jiaxing
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 2, 2010, : 317 - +
  • [4] Wind power prediction based on multiple support vector machines
    Ding, Min
    Chen, Zhe
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 5401 - 5406
  • [5] Wind Power Ramp Event Prediction with Support Vector Machines
    Kramer, Oliver
    Treiber, Nils Andre
    Sonnenschein, Michael
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, HAIS 2014, 2014, 8480 : 37 - 48
  • [6] Wind Speed and Direction Prediction for Wind Farms Using Support Vector Regression
    Lahouar, Ali
    Slama, Jaleleddine Ben Hadj
    [J]. 2014 5TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2014,
  • [7] PERFORMANCE COMPARISON OF MULTILAYER PERCEPTRONS AND SUPPORT VECTOR MACHINES IN A SHORT-TERM WIND SPEED PREDICTION PROBLEM
    Salcedo Sanz, S.
    Ortiz-Garcia, E. G.
    Perez-Bellido, A. M.
    Portilla-Figueras, A.
    Prieto, L.
    Paredes, D.
    Correoso, F.
    [J]. NEURAL NETWORK WORLD, 2009, 19 (01) : 37 - 51
  • [8] Short-term Wind Speed Forecasting using Support Vector Machines
    Pinto, Tiago
    Ramos, Sergio
    Sousa, Tiago M.
    Vale, Zita
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN DYNAMIC AND UNCERTAIN ENVIRONMENTS (CIDUE), 2014, : 40 - 46
  • [9] Fine tuning support vector machines for short-term wind speed forecasting
    Zhou, Junyi
    Shi, Jing
    Li, Gong
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (04) : 1990 - 1998
  • [10] Improving the accuracy and speed of support vector machines
    Burges, CJC
    Scholkopf, B
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 375 - 381