Semiclassical states for Dirac-Klein-Gordon system with critical growth

被引:3
|
作者
Ding, Yanheng [1 ,2 ]
Guo, Qi [1 ,2 ]
Yu, Yuanyang [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
美国国家科学基金会;
关键词
Dirac-Klein-Gordon system; Least energy solutions; Concentration; Critical; STATIONARY STATES; EQUATIONS; EXISTENCE; PRINCIPLE;
D O I
10.1016/j.jmaa.2020.124092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following critical Dirac-Klein-Gordon system in R-3: {i epsilon Sigma(3)(k=1) alpha(k)partial derivative(k)u - alpha beta u + V(x)u - lambda phi beta u = P(x) f (vertical bar u vertical bar)u + Q(x) vertical bar u vertical bar u, -epsilon(2)Delta phi + M phi + 4 pi lambda(beta u) . u, where epsilon > 0 is a small parameter, alpha > 0 is a constant. We prove the existence and concentration of solutions under suitable assumptions on the potential V(x), P(x) and Q(x). We also show the semiclassical solutions w E with maximum points w(epsilon) concentrating at a special set H-P characterized by V(x), P(x) and Q(x), and for any sequence x(epsilon) -> x(0 )is an element of H-p, v(epsilon) (x) := w(epsilon) (epsilon x + x(epsilon)) converges in H-1 (R-3 , C-4) to a least energy solution u of {i Sigma(3)(k=1) alpha(k)partial derivative(k)u - alpha beta u + V(x(0))u - lambda phi beta u = P(x(0)) f (vertical bar u vertical bar)u + Q(x(0)) vertical bar u vertical bar u, -Delta phi + M phi + 4 pi lambda(beta u) . u. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Semiclassical states of a type of Dirac-Klein-Gordon equations with nonlinear interacting terms
    Ding, Yanheng
    Guo, Qi
    Yu, Yuanyang
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (05):
  • [2] A conservative stochastic Dirac-Klein-Gordon system
    Dinvay, Evgueni
    Selberg, Sigmund
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [3] On the concentration of semi-classical states for a nonlinear Dirac-Klein-Gordon system
    Ding, Yanheng
    Xu, Tian
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (03) : 1264 - 1294
  • [4] Wave operator for the system of the Dirac-Klein-Gordon equations
    Hayashi, Nakao
    Ikeda, Masahiro
    Naumkin, Pavel I.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (08) : 896 - 910
  • [5] On Global Existence of 3D Charge Critical Dirac-Klein-Gordon System
    Wang, Xuecheng
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) : 10801 - 10846
  • [6] Remarks on ill-posedness for the Dirac-Klein-Gordon system
    Machihara, Shuji
    Okamoto, Mamoru
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (03) : 179 - 190
  • [7] A critical case on the Dirac-Klein-Gordon equations in one space dimension
    Fang, Yung-Fu
    Huang, Hsiu-Chuan
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1045 - 1059
  • [8] STATIONARY STATES OF DIRAC-KLEIN-GORDON SYSTEMS WITH NONLINEAR INTERACTING TERMS
    Ding, Yanheng
    Guo, Qi
    Ruf, Bernhard
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) : 5731 - 5755
  • [9] Scattering problem for a system of nonlinear Klein-Gordon equations related to Dirac-Klein-Gordon equations
    Wibowo, Ratno Bagus Edy
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 881 - 890
  • [10] Large time well-posedness for a Dirac-Klein-Gordon system
    Cacciafesta, Federico
    de Suzzoni, Anne-Sophie
    Meng, Long
    Sok, Jeremy
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 239