Interfacial thermal resistance between nanoconfined water and silicon: Impact of temperature and silicon phase

被引:9
|
作者
Goncalves, William [1 ]
Isaiev, Mykola [2 ]
Lacroix, David [2 ]
Gomes, Severine [1 ]
Termentzidis, Konstantinos [1 ]
机构
[1] Univ Lyon, INSA Lyon, CNRS, CETHIL,UMR5008, F-69621 Villeurbanne, France
[2] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
关键词
Nanoscale heat transfer; Kapitza resistance; Silicon; Molecular simulations; KAPITZA RESISTANCE; MOLECULAR-DYNAMICS; MODEL; DEPENDENCE; GRAPHENE;
D O I
10.1016/j.surfin.2022.102188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations are used to investigate the interfacial thermal resistance (Kapitza resistance) between crystalline or amorphous silicon and nanoconfined water at nanoscale. The simulations are performed under various conditions such as: different silicon phases (crystalline or amorphous), various water slab thicknesses, average system temperature and temperature difference between the thermostats. The results indicate that the Kapitza resistance is larger between crystalline silicon slabs and water (asymptotic to 1.2 10(-8) K m(2) W-1) than between amorphous silicon slabs and water (asymptotic to 0.7 10(-8) K m(2) W-1), which can be interpreted as a density effect using the acoustic mismatch model. We have not observed significant size effects related to the water slab thickness on the Kapitza resistance nor on the thermal conductivity of the nanoconfined water. Furthermore, the interfacial thermal resistance is linearly impacted by temperature unless the temperature difference between the thermostats is larger than 50 K. The presented results provide new insights in nano heat transfer in presence of a solid/liquid interface.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Thermal conductivity and interfacial thermal resistance in the heterostructure of silicon/amorphous silicon dioxide: the strain and temperature effect
    Gu, Hanqing
    Wang, Jiuhong
    Wei, Xueyong
    Wang, Hairong
    Li, Zhibin
    NANOTECHNOLOGY, 2020, 31 (50)
  • [2] Temperature dependence of thermal resistance at the water/silicon interface
    Barisik, Murat
    Beskok, Ali
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 77 : 47 - 54
  • [3] Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate
    Zhang, Jingchao
    Hong, Yang
    Liu, Mengqi
    Yue, Yanan
    Xiong, Qingang
    Lorenzini, Giulio
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 871 - 877
  • [4] Impact of the thermal motion of silicon atoms on the viscosity of nanoconfined aqueous NaCl solution
    Li, Jiapeng
    Wang, Haochen
    Li, Yusheng
    MODERN PHYSICS LETTERS B, 2018, 32 (18):
  • [5] Interfacial thermal conductance between silicon and a vertical carbon nanotube
    Hu, Ming
    Keblinski, Pawel
    Wang, Jian-Sheng
    Raravikar, Nachiket
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
  • [6] Investigation on interfacial thermal resistance and phonon scattering at twist boundary of silicon
    Ju, Sheng-Hong
    Liang, Xin-Gang
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (05)
  • [7] Thermal contact resistance between graphene and silicon dioxide
    Chen, Z.
    Jang, W.
    Bao, W.
    Lau, C. N.
    Dames, C.
    APPLIED PHYSICS LETTERS, 2009, 95 (16)
  • [8] Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide
    Wu, Weikang
    Zhang, Leining
    Liu, Sida
    Ren, Hongru
    Zhou, Xuyan
    Li, Hui
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (08) : 2815 - 2822
  • [9] Impact of ambient temperature and thermal resistance on device performance of junctionless silicon-nanotube FET
    Kumar, Nitish
    Kaushik, Pragyey Kumar
    Gupta, Ankur
    Singh, Pushpapraj
    NANOTECHNOLOGY, 2022, 33 (33)
  • [10] Thermal conductivity temperature dependence of water confined in nanoporous silicon
    Wang, Xiaorui
    Goncalves, William
    Lacroix, David
    Isaiev, Mykola
    Gomes, Severine
    Termentzidis, Konstantinos
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)