The vector lattice structure on the Isbell-convex hull of an asymmetrically normed real vector space

被引:4
|
作者
Conradie, Julie [1 ]
Kunzi, Hans-Peter A. [1 ]
Otafudu, Olivier Olela [2 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
[2] Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
To-quasi-metric; Asymmetric norm; Minimal pairs; Isbell-convex; Injective; Hyperconvex; Dedekind-complete; Specialisation order; T-0-QUASI-METRIC SPACES; TIGHT EXTENSIONS; SPANS;
D O I
10.1016/j.topol.2017.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An explicit description of the algebraic and vector lattice operations on the Isbell-convex hull of an asymmetrically normed real vector space is provided. Connections between the concepts of Isbell-convexity, injectivity and Dedekind-completeness of asymmetrically normed real vector spaces are also considered. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 112
页数:21
相关论文
共 50 条
  • [1] W-convexity on the Isbell-convex hull of an asymmetrically normed real vector space
    Otafudu, Olivier Olela
    Zweni, Mcedisi Sphiwe
    FILOMAT, 2023, 37 (06) : 1975 - 1988
  • [2] Convex Hull in feature space for Support Vector Machines
    Osuna, E
    De Castro, O
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2002, PROCEEDINGS, 2002, 2527 : 411 - 419
  • [3] THE STRUCTURE OF THE NORMED LATTICE GENERATED BY THE CLOSED, BOUNDED, CONVEX SUBSETS OF A NORMED SPACE
    Bendit, Theo
    Sims, Brailey
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (06) : 1069 - 1081
  • [4] On Fragments on Lattice Normed Vector Lattices
    Bolat, Sezer
    Erkursun-Ozcan, Nazife
    Gezer, Niyazi Anil
    RESULTS IN MATHEMATICS, 2023, 78 (06)
  • [5] On Fragments on Lattice Normed Vector Lattices
    Sezer Bolat
    Nazife Erkurşun-Özcan
    Niyazi Anıl Gezer
    Results in Mathematics, 2023, 78
  • [6] Continuous linear utility for preferences on convex sets in normed real vector spaces
    Bültel, D
    MATHEMATICAL SOCIAL SCIENCES, 2001, 42 (01) : 89 - 98
  • [7] VARIATIONS OF BASIS FOR NORMED VECTOR SPACE
    TRAVIS, D
    HEUER, GA
    DUEMMEL, J
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1048 - &
  • [8] NORMED VECTOR SPACES CONSISTING OF CLASSES OF CONVEX SETS
    EWALD, G
    SHEPHARD, GC
    MATHEMATISCHE ZEITSCHRIFT, 1966, 91 (01) : 1 - &
  • [9] THE YOSIDA SPACE OF THE VECTOR LATTICE HULL OF AN ARCHIMEDEAN l-GROUP WITH UNIT
    Ball, Richard N.
    Hager, Anthony W.
    Johnson, Donald G.
    Madden, James J.
    Mcgovern, Warren W. M.
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (03): : 1019 - 1030
  • [10] The Quasiconvexity of Quasigeodesics in Real Normed Vector Spaces
    M. Huang
    S. Ponnusamy
    X. Wang
    Results in Mathematics, 2010, 57 : 239 - 256