Synchronization of fractional-order uncertain chaotic systems with input nonlinearity

被引:16
|
作者
Noghredani, Naeimadeen [1 ]
Balochian, Saeed [1 ]
机构
[1] Islamic Azad Univ, Gonabad Branch, Dept Elect Engn, Gonabad, Iran
关键词
uncertainty; fractional-order chaotic systems; state error; input nonlinearity; sliding mode control; PROJECTIVE SYNCHRONIZATION; BEHAVIOR;
D O I
10.1080/03081079.2014.976217
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, sliding mode control has been designed for synchronization of fractional order uncertain chaotic systems with input nonlinearity. First, sliding mode control law has been taken from chaotic state error system which is asymptotically stable. Second, the shown sliding mode control ensures that fractional-order error system is asymptotically stable in the presence of uncertainty and nonlinear input. Simulation results using MATLAB software show that the designed controller is able to synchronize fractional-order chaotic systems in the presence of the mentioned factors.
引用
收藏
页码:485 / 498
页数:14
相关论文
共 50 条
  • [1] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    [J]. ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727
  • [2] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    Bouzeriba, A.
    Boulkroune, A.
    Bouden, T.
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (05) : 893 - 908
  • [3] Mittag–Leffler synchronization of fractional-order uncertain chaotic systems
    王乔
    丁冬生
    齐冬莲
    [J]. Chinese Physics B, 2015, (06) : 229 - 234
  • [4] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    A. Bouzeriba
    A. Boulkroune
    T. Bouden
    [J]. International Journal of Machine Learning and Cybernetics, 2016, 7 : 893 - 908
  • [5] Projective synchronization of different uncertain fractional-order multiple chaotic systems with input nonlinearity via adaptive sliding mode control
    Zahra Rashidnejad Heydari
    Paknosh Karimaghaee
    [J]. Advances in Difference Equations, 2019
  • [6] Projective synchronization of different uncertain fractional-order multiple chaotic systems with input nonlinearity via adaptive sliding mode control
    Heydari, Zahra Rashidnejad
    Karimaghaee, Paknosh
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [7] Chaos Synchronization of Fractional-Order Chaotic Systems With Input Saturation
    Khamsuwan, Pitcha
    Sangpet, Teerawat
    Kuntanapreeda, Suwat
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [8] Synchronization of uncertain fractional-order chaotic systems via the fractional-order sliding mode controller
    Yan, Xiaomei
    Shang, Ting
    Zhao, Xiaoguo
    Ji, Ruirui
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1444 - 1449
  • [9] Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities
    Boubellouta, A.
    Zouari, F.
    Boulkroune, A.
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2019, 48 (03) : 211 - 234
  • [10] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    [J]. CHINESE PHYSICS B, 2015, 24 (06)