Spectral-Spatial Hyperspectral Unmixing Using Multitask Learning

被引:28
|
作者
Palsson, Burkni [1 ]
Sveinsson, Johannes R. [1 ]
Ulfarsson, Magnus O. [1 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Hyperspectral; unmixing; autoencoder; multitask learning; deep learning; ENDMEMBER EXTRACTION; SPARSE REGRESSION; FAST ALGORITHM;
D O I
10.1109/ACCESS.2019.2944072
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral unmixing is an important and challenging task in the field of remote sensing which arises when the spatial resolution of sensors is insufficient for the separation of spectrally distinct materials. Hyperspectral images, like other natural images, have highly correlated pixels and it is very desirable to make use of this spatial information. In this paper, a deep learning based method for blind hyperspectral unmixing is presented. The method uses multitask learning through multiple parallel autoencoders to unmix a neighborhood of pixels simultaneously. Operating on image patches instead of single pixels enables the method to take advantage of spatial information in the hyperspectral image. The method is the first in its class to directly utilize the spatial structure of hyperspectral images (HSIs) for the estimation of the spectral signatures of endmembers in the data cube. We evaluate the proposed method using two real HSIs and compare it to seven state-of-the-art methods that either rely only on spectral or both on spectral and spatial information in the HSIs. The proposed method outperforms all the baseline unmixing methods in experiments.
引用
收藏
页码:148861 / 148872
页数:12
相关论文
共 50 条
  • [1] MULTITASK LEARNING FOR SPATIAL-SPECTRAL HYPERSPECTRAL UNMIXING
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 564 - 567
  • [2] SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS
    Xu, Chenguang
    Zhang, Shaoquan
    Deng, Chengzhi
    Wu, Zhaoming
    Yang, Jiaheng
    Long, Guang
    Cao, Longfei
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2169 - 2172
  • [3] Spectral-Spatial Hyperspectral Unmixing Using Nonnegative Matrix Factorization
    Zhang, Shaoquan
    Zhang, Guorong
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    Plaza, Antonio
    Li, Jun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] A Global Spectral-Spatial Feature Learning Network for Semisupervised Hyperspectral Unmixing
    Kong, Fanqiang
    Chen, Mengyue
    Li, Yunsong
    Li, Dan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3190 - 3203
  • [5] Gated Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing
    Hua, Ziqiang
    Li, Xiaorun
    Jiang, Jianfeng
    Zhao, Liaoying
    [J]. REMOTE SENSING, 2021, 13 (16)
  • [6] A SPECTRAL-SPATIAL ATTENTION AUTOENCODER NETWORK FOR HYPERSPECTRAL UNMIXING
    Wang, Jie
    Xu, Jindong
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7519 - 7522
  • [7] Spectral-spatial constrained sparse unmixing of hyperspectral imagery using a hybrid spectral library
    Xu, Ning
    Xiao, Xinyao
    Geng, Xiurui
    You, Hongjian
    Cao, Yingui
    [J]. REMOTE SENSING LETTERS, 2016, 7 (07) : 641 - 650
  • [8] SPECTRAL-SPATIAL JOINT SPARSITY UNMIXING OF HYPERSPECTRAL DATA USING OVERCOMPLETE DICTIONARIES
    Bieniarz, J.
    Aguilera, E.
    Zhu, X. X.
    Mueller, R.
    Heiden, U.
    Reinartz, P.
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [9] Dual Branch Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing
    Hua, Ziqiang
    Li, Xiaorun
    Feng, Yueming
    Zhao, Liaoying
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Spectral-Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing
    Zhang, Shaoquan
    Li, Jun
    Li, Heng-Chao
    Deng, Chengzhi
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3265 - 3276