MITIGATOR: GNSS-Based System for Remote Sensing of Ionospheric Absolute Total Electron Content

被引:3
|
作者
Yasyukevich, Yury V. [1 ]
Vesnin, Artem M. [1 ]
Kiselev, Alexander V. [1 ]
Mylnikova, Anna A. [1 ]
Oinats, Alexey V. [1 ]
Ivanova, Vera A. [1 ]
Demyanov, Vladislav V. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Solar Terr Phys, Irkutsk 664033, Russia
[2] Irkutsk State Transport Univ, Automat Telemech & Commun Dept, Irkutsk 664074, Russia
基金
俄罗斯基础研究基金会;
关键词
GNSS; total electron content; ionosphere; remote sensing; system; LEAST-SQUARES; MAPS;
D O I
10.3390/universe8020098
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Monitoring the Earth's ionosphere is an important, fundamental and applied problem. Global Navigation Satellite Systems (GNSS) provide a way of measuring the ionospheric total electron content (TEC), but real-time single-station absolute TEC measurements are still a problem. This study describes a single-station system to measure the absolute TEC, based on the GNSS-MITIGATOR (MonITorInG the Absolute TOtal electRon content) system. The latter enables real-time measurements for the absolute TEC and its derivatives in time and in space to be obtained. The system is implemented by using JAVAD receivers. The convergence time and the run-mode retention time is ~8 h. We provide potential methods for using the system to estimate the critical frequency of the ionosphere, foF2, at oblique paths in the Siberian region. The developed tool could be useful for supporting real-time multi-instrumental ionosphere monitoring or for compensating for the ionospheric errors of radio equipment.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] ScintPi 2.0 and 3.0: low-cost GNSS-based monitors of ionospheric scintillation and total electron content
    Socola, Josemaria Gomez
    Rodrigues, Fabiano S.
    [J]. EARTH PLANETS AND SPACE, 2022, 74 (01):
  • [2] ScintPi 2.0 and 3.0: low-cost GNSS-based monitors of ionospheric scintillation and total electron content
    Josemaria Gomez Socola
    Fabiano S. Rodrigues
    [J]. Earth, Planets and Space, 74
  • [3] GNSS-based simulation of spacecraft formation flight: A case study of ionospheric plasma remote sensing
    Peng, YuXiang
    Scales, Wayne
    [J]. RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2020, 175 (11-12): : 998 - 1001
  • [4] Ionospheric GNSS Total Electron Content for Tsunami Warning
    Liu, Jann-Yenq
    Lin, Chi-Yen
    Tsai, Yu-Lin
    Liu, Tien-Chi
    Hattori, Katsumi
    Sun, Yang-Yi
    Wu, Tso-Ren
    [J]. JOURNAL OF EARTHQUAKE AND TSUNAMI, 2019, 13 (5-6)
  • [5] Effects of Ionospheric Scintillation on GNSS-Based Positioning
    Pi, Xiaoqing
    Iijima, Byron A.
    Lu, Wenwen
    [J]. NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2017, 64 (01): : 3 - 22
  • [6] Effects of Ionospheric Scintillation on GNSS-Based Positioning
    Pi, Xiaoqing
    Iijima, Byron A.
    Lu, Wenwen
    [J]. PROCEEDINGS OF THE 27TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2014), 2014, : 1090 - 1100
  • [7] New Cyberinfrastructure for GNSS Ionospheric Scintillation and Total Electron Content Parameters
    Coster, Anthea
    Skone, Susan
    Hampton, Donald
    Donovan, Eric
    Weatherwax, Allan
    [J]. PROCEEDINGS OF THE 31ST INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2018), 2018, : 4102 - 4110
  • [8] Light weight GNSS-based passive radar for remote sensing UAV applications
    Gamba, Micaela Troglia
    Ugazio, Sabrina
    Marucco, Gianluca
    Pini, Marco
    Lo Presti, Letizia
    [J]. 2015 IEEE 1ST INTERNATIONAL FORUM ON RESEARCH AND TECHNOLOGIES FOR SOCIETY AND INDUSTRY (RTSI 2015) PROCEEDINGS, 2015,
  • [9] Influence of Ionospheric Irregularities on GNSS Remote Sensing
    Tinin, M. V.
    [J]. ADVANCES IN METEOROLOGY, 2015, 2015
  • [10] GNSS-based tomographic reconstruction of the ionospheric electron density distribution using a combined algorithm
    Wen Debao
    Zhang, Kefei
    Norman, Robert
    [J]. CURRENT SCIENCE, 2010, 99 (09): : 1233 - 1238