Mechanisms of avalanche dynamics and forms of scaling in sandpiles

被引:14
|
作者
Stella, AL [1 ]
De Menech, M
机构
[1] INFM, Dipartimento Fis, I-35131 Padua, Italy
[2] Univ Padua, Sezione INFN, I-35131 Padua, Italy
[3] CERTOTTICA SCARL, I-32013 Belluno, Italy
来源
PHYSICA A | 2001年 / 295卷 / 1-2期
关键词
avalanches; self-organized criticality; multiscaling;
D O I
10.1016/S0378-4371(01)00060-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The probability distributions of several avalanche quantities of the Bak-Tang-Wiesenfeld sandpile in two dimensions display multifractal scaling. This explains why this prototype model remained extremely problematic and controversial for such a long time after its introduction. Other models, like the Manna model, obey instead standard finite size scaling and fall in different universality classes. An analysis of time series for the waves into which avalanches can be decomposed, shows that the different forms of scaling can be ascribed to the respective autocorrelation functions. The intermittency of the Bak-Tang-Wiesenfeld sandpile is due to this autocorrelation being long range in time, unlike in the Manna case. A coarse graining of the wave rime series elucidates these differences and the mechanism leading to multifractality. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [1] Scaling of avalanche queues in directed dissipative sandpiles
    Tadic, B
    Priezzhev, V
    PHYSICAL REVIEW E, 2000, 62 (03): : 3266 - 3275
  • [2] ON THE AVALANCHE-FINITENESS OF ABELIAN SANDPILES
    CHAN, SW
    CHAU, HF
    PHYSICA A, 1995, 216 (03): : 227 - 232
  • [3] Scaling limit of the odometer in divisible sandpiles
    Cipriani, Alessandra
    Hazra, Rajat Subhra
    Ruszel, Wioletta M.
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) : 829 - 868
  • [4] Scaling limit of the odometer in divisible sandpiles
    Alessandra Cipriani
    Rajat Subhra Hazra
    Wioletta M. Ruszel
    Probability Theory and Related Fields, 2018, 172 : 829 - 868
  • [5] LAPLACIAN GROWTH, SANDPILES, AND SCALING LIMITS
    Levine, Lionel
    Peres, Yuval
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 355 - 382
  • [6] Loss of criticality in the avalanche statistics of sandpiles with dissipative sites
    Paguirigan, Antonino A., Jr.
    Monterola, Christopher P.
    Batac, Rene C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 785 - 793
  • [7] Scaling and complex avalanche dynamics in the Abelian sandpile model
    Amir Abdolvand
    Afshin Montakhab
    The European Physical Journal B, 2010, 76 : 21 - 30
  • [8] Scaling and complex avalanche dynamics in the Abelian sandpile model
    Abdolvand, Amir
    Montakhab, Afshin
    EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (01): : 21 - 30
  • [9] The dynamics of sandpiles with a sheared flow
    Oak Ridge National Laboratory, Oak Ridge, TN 37831-8070, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (58-63):
  • [10] Dynamics of sandpiles: Physical mechanisms, coupled stochastic equations, and alternative universality classes
    Mehta, A
    Luck, JM
    Needs, RJ
    PHYSICAL REVIEW E, 1996, 53 (01) : 92 - 102