On the Density of Henig Efficient Points in Locally Convex Topological Vector Spaces

被引:1
|
作者
Newhall, Joseph [1 ]
Goodrich, Robert K. [2 ]
机构
[1] Zayed Univ, Dept Math & Stat, Dubai, U Arab Emirates
[2] Univ Colorado, Boulder, CO 80309 USA
关键词
Henig efficient point; Regular efficient point; Asymptotic cone; Asymptotically compact set; Density results; THEOREM; OPTIMIZATION; SET;
D O I
10.1007/s10957-014-0644-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a generalization of the Arrow, Barankin and Blackwell theorem to locally convex Hausdorff topological vector spaces. Our main result relaxes the requirement that the objective set be compact; we show asymptotic compactness is sufficient, provided the asymptotic cone of the objective set can be separated from the ordering cone by a closed and convex cone. Additionally, we give a similar generalization using Henig efficient points when the objective set is not assumed to be convex. Our results generalize results of A. Gopfert, C. Tammer, and C. Zlinescu to locally convex spaces.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 50 条