Fine Registration for VHR Images Based on Superpixel Registration-Noise Estimation

被引:2
|
作者
Zhu, Xianzhang [1 ]
Cao, Hui [1 ]
Zhang, Yongjun [1 ]
Tan, Kai [2 ]
Ling, Xiao [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[2] HUAWEI Technol Co Ltd, Wuhan Res Inst, Wuhan 430200, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Image registration; local rectification; registration noise (RN); sparse representation; superpixel segmentation;
D O I
10.1109/LGRS.2018.2849696
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Local nonlinear geometric distortion is problematic in the registration of very high-resolution (VHR) images. In the standard registration approach, the precision of control points generated from salient feature matching cannot be guaranteed. This letter introduces a novel superpixel registration-noise (RN) estimation method based on a two-step fine registration technique that can be estimate and mitigate the local residual misalignments in VHR images. The first step employs superpixel sparse representation and multiple displacement analysis to estimate RN information of the preregistered image. The second step optimizes the control points obtained in preregistration by combining the RN information and gross error information, and finally fine registers the input image by employing local rectification. The experiments using two data sets generated from Chinese GF2, GF1, and ZY3 satellites are discussed in this letter, and the promising results verify the effectiveness of the proposed new method.
引用
收藏
页码:1615 / 1619
页数:5
相关论文
共 50 条
  • [1] Edge-Based Registration-Noise Estimation in VHR Multitemporal and Multisensor Images
    Han, Youkyung
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1231 - 1235
  • [2] A REGISTRATION-NOISE DRIVEN TECHNIQUE FOR THE ALIGNMENT OF VHR REMOTE SENSING IMAGES
    Marchesi, Silvia
    Bruzzone, Lorenzo
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1023 - 1026
  • [3] PRECISE CO-REGISTRATION OF VERY HIGH RESOLUTION OPTICAL IMAGES BY REGISTRATION-NOISE ESTIMATION
    Han, Youkyung
    Bovolo, Francesca
    Bruzzone, Lorenzo
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4232 - 4235
  • [4] Analysis and Adaptive Estimation of the Registration Noise Distribution in Multitemporal VHR Images
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marchesi, Silvia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2658 - 2671
  • [5] REGISTRATION-NOISE REDUCTION IN DIFFERENCE IMAGES FOR CHANGE DETECTION
    GONG, P
    LEDREW, EF
    MILLER, JR
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (04) : 773 - 779
  • [6] Adaptive estimation of the registration-noise distribution for accurate unsupervised change detection
    Bruzzone, L
    Cossu, R
    Gomarasca, M
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2584 - 2586
  • [7] Fine Co-registration of VHR Images for Multitemporal Urban Area Analysis
    Han, Youkyung
    Bovolo, Francesca
    Bruzzone, Lorenzo
    2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,
  • [8] A multiscale technique for reducing registration noise in change detection on multitemporal VHR images
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marchesi, Silvia
    2007 INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTI-TEMPORAL REMOTE SENSING IMAGES, 2007, : 21 - 26
  • [9] An adaptive parcel-based technique robust to registration noise for change detection in multitemporal VHR images
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marchesi, Silvia
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748
  • [10] A Context-Sensitive Technique Robust to Registration Noise for Change Detection in VHR Multispectral Images
    Marchesi, Silvia
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1877 - 1889