Hierarchical hyperbolicity of graph products

被引:5
|
作者
Berlyne, Daniel [1 ]
Russell, Jacob [2 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
[2] Rice Univ, Dept Math, Houston, TX 77005 USA
关键词
Hierarchically hyperbolic; graph product; GEOMETRY; COMPLEX; SPACES; AUTOMORPHISMS;
D O I
10.4171/GGD/652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any graph product of finitely generated groups is hierarchically hyperbolic relative to its vertex groups. We apply this result to answer two questions of Behrstock, Hagen, and Sisto: we show that the syllable metric on any graph product forms a hierarchically hyperbolic space, and that graph products of hierarchically hyperbolic groups are themselves hierarchically hyperbolic groups. This last result is a strengthening of a result of Berlai and Robbio by removing the need for extra hypotheses on the vertex groups. We also answer two questions of Genevois about the geometry of the electrification of a graph product of finite groups.
引用
收藏
页码:523 / 580
页数:58
相关论文
共 50 条
  • [1] Hyperbolicity on Graph Operators
    Mendez-Bermudez, J. A.
    Reyes, Rosalio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    SYMMETRY-BASEL, 2018, 10 (09):
  • [2] Hyperbolicity and chordality of a graph
    Wu, Yaokun
    Zhang, Chengpeng
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [3] On the Hyperbolicity Constant in Graph Minors
    Carballosa, Walter
    Rodriguez, Jose M.
    Rosario, Omar
    Sigarreta, Jose M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (02): : 481 - 503
  • [4] On hierarchical hyperbolicity of cubical groups
    Hagen, Mark F.
    Susse, Tim
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 45 - 89
  • [5] From Hierarchical to Relative Hyperbolicity
    Russell, Jacob
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (01) : 575 - 624
  • [6] On hierarchical hyperbolicity of cubical groups
    Mark F. Hagen
    Tim Susse
    Israel Journal of Mathematics, 2020, 236 : 45 - 89
  • [7] Hyperbolicity of the graph of nonseparating multicurves
    Hamenstaedt, Ursula
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (03): : 1759 - 1778
  • [8] On the Hyperbolicity Constant in Graph Minors
    Walter Carballosa
    José M. Rodríguez
    Omar Rosario
    José M. Sigarreta
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 481 - 503
  • [9] Distortion of the hyperbolicity constant of a graph
    Carballosa, Walter
    Pestana, Domingo
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [10] Hyperbolicity of the cyclic splitting graph
    Mann, Brian
    GEOMETRIAE DEDICATA, 2014, 173 (01) : 271 - 280